Isotopic traces of Mesozoic air in dinosaur tooth enamel DINGSU FENG 1 , DANIEL HERWARTZ 1 , THOMAS TÜTKEN 2 , EVA MARIA GRIEBELER 3 AND **ANDREAS**PACK 4 ¹Ruhr University Bochum Understanding the relationship between surface temperature and atmospheric CO_2 levels is crucial for comprehending not only Earth's past but also its future climate. The triple oxygen isotope composition ($\Delta^{'17}O$) of atmospheric O_2 provides valuable insights into pCO_2 (1–3). However, only a few materials retain traces of atmospheric $\Delta^{'17}O$ (4). We examined the $\Delta^{'17}O$ values of unaltered tooth enamel from Late Jurassic and Late Cretaceous dinosaurs by means of laser fluorination. Dinosaurs inhaled air O_2 with anomalous $\Delta^{'17}O$, which left an isotopic fingerprint in their tooth enamel. Our analysis revealed low $\Delta^{'17}O$ values in the enamel, which we interpret to indicate significantly lower $\Delta^{'17}O$ levels in the Late Jurassic and Late Cretaceous atmospheric O_2 . This discovery is discussed in relation to atmospheric pCO_2 , variations in gross primary production, and factors of animal physiology. (1) M. Bender, T. Sowers, L. Labeyrie, The Dole effect and its variations during the last 130,000 years as measured in the Vostok ice core. *Global Biogeochem. Cycles* **8**, 363–376 (1994). (2). E. D. Young, L. Y. Yeung, I. E. Kohl, On the $\Delta^{17}O$ Budget of Atmospheric O₂. *Geochim. Cosmochim. Acta* **135**, 102–125 (2014).(3) B. Luz, E. Barkan, M. L. Bender, M. H. Thiemens, K. A. Boering, Triple-isotope composition of atmospheric oxygen as a tracer of biosphere productivity. *Nature* **54**, 349–392 (1999). (4) A. Pack, Isotopic traces of atmospheric O₂ in rocks, minerals, and melts. *Rev. Min. Geochem.* **86**, 217–240 (2021). ²Universität Mainz ³University of Mainz ⁴University of Göttingen