

Unsteady gypsum cycling may decouple ocean and atmosphere carbon reservoirs

KALEV HANTSOO AND KIMBERLY V. LAU

The Pennsylvania State University

Of the major ocean ions, calcium and sulfate have the greatest potential to undergo rapid changes in concentration due to the weathering and burial of large gypsum deposits. Here we develop an ocean-atmosphere box model to investigate the influence of unsteady gypsum cycling on oceanic carbon cycling. Model results indicate that weathering or burial of large gypsum deposits can induce long-term changes in ocean pH and the size of the oceanic DIC reservoir without affecting atmospheric $p\text{CO}_2$. On an ALK-DIC cross-plot, this effect is analogous to changing carbonate mineral weatherability. The size of the perturbation is primarily a function of the relative change in oceanic $[\text{Ca}^{2+}]$, while the timescale of the ocean's return to steady state depends on the degree to which background gypsum burial responds to changes in the $\text{Ca}^{2+}\text{-SO}_4^{2-}$ ion product. A system responsive to the ion product is restored over the timescale of sulfate's residence time in the ocean ($\sim 10^7$ yr), while a system responsive only to tectonic forcing essentially shifts to a new steady state until the opposite gypsum flux is applied. We apply this model to a hypothesized gypsum weathering event in the Eocene (56-34 Ma) by matching the pace and magnitude of simulated gypsum weathering to the Eocene seawater sulfate $\delta^{34}\text{S}$ curve. The model outputs suggest that a protracted (~ 15 Myr) episode of gypsum weathering beginning at 54-53 Ma could have gradually lowered ocean pH by 0.1-0.15 units and the DIC reservoir by $\sim 15\text{-}20\%$ by the late Eocene, without affecting $p\text{CO}_2$. The effects of unsteady gypsum cycling could complicate the conversion of pH proxy data to $p\text{CO}_2$ data, as this conversion relies in part on assumptions about oceanic Ca concentration. More broadly, this mechanism may be relevant to interpretations of the oceanic carbon and oxygen isotope records, and to reconstructed changes in oceanic nutrient speciation in deep time.