Assessing the plausibility of directly constraining ancient atmospheric pCO₂ from halite fluid inclusions: Extending our record of ancient CO₂ beyond the ice cores.

MICHAEL N. HUDGINS, JUSTIN G. PARK AND MORGAN SCHALLER

Rensselaer Polytechnic Institute

Our current methods for reconstructing ancient atmospheric CO₂ rely heavily on proxies for time periods prior to the ice-core record. Fluid inclusions in halite from surficial environments have recently gained attention for their ability to capture and preserve snapshots of ancient air, and by mechanical decrepitation these inclusion gases can be quantified via mass spectrometry. However, it has yet to be demonstrated that the CO₂ contents measured in halite accurately represents the overlying air at various pCO2 levels. To address this, we precipitated halite in a sealed pressure vessel under various pCO₂ conditions (450 ppm, 3000 ppm, and 5000 ppm). The gas contents of the lab-grown halite (LGH) were measured with a quadrupole mass spectrometer. Observed CO2 contents fall between expected values of air and air-saturated brine for the different pCO2 conditions. By partitioning gas contributions from each phase[1], we observe atmospheric pCO2 values closely matching the conditions under which the LGH precipitated. These findings demonstrate the ability of halite inclusions to faithfully entrap and preserve atmospheric CO2, giving us confidence in applying our methods to new and existing analyses of both natural modern and ancient halite-inclusions. A major concern with natural and ancient inclusions is their propensity to trap organic matter and/or intact microbes, potentially leading to post entrapment alteration of the non-conservative species (i.e., CO₂ and O2). On natural samples from the modern we show that with appropriate partitioning we can exclude analyses showing evidence of such alteration, ensuring we only interpret unaltered atmospheric CO₂ contents. Finally, we present records of atmospheric CO₂ spanning from the modern to the Mesoproterozoic. Coupled with microthermometry data, we provide insight into Earth's long term climatic evolution that corroborates prior models and proxies. Bulk gas analysis of fluid inclusions in natural halite samples are clearly trapping the atmosphere during mineral formation. This is a promising method to reliably reconstruct atmospheric compositions through deep time and extend direct measurements of ancient pCO₂ well beyond the ice core record.

References:

[1] Park, J.G., and Schaller, M.F., (2025), GR, doi.org/10.1016/j.gr.2024.12.003