Environmental Implications of Copper Sulfide Mineralogy in Angular and Hummocky Bennu Particles

MELISSA K. KONTOGIANNIS 1 , KEN DOMANIK 1 , PROF. HAROLD C. CONNOLLY JR., PHD 1,2,3 AND DANTE S. LAURETTA 1

On September 24, 2023, 121.6 grams from asteroid (101955) Bennu was delivered to Earth by NASA's OSIRIS-REx mission [1]. Sulfides are ubiquitous in these samples [1,3]; their compositions and textures offer insight into mineral formation and alteration [2,4], providing a basis for comparing the three distinct Bennu particle types — hummocky, angular, and mottled [1]. This study examines copper sulfides in one section from a hummocky particle and two sections from an angular particle.

We used electron probe microanalysis to collect backscatter electron images and perform wavelength-dispersive spectroscopy for elemental quantification. The sulfide populations in all three sections are primarily Fe- and Cu-sulfides, with smaller, less abundant Ni-sulfides. The Cu-sulfides in the hummocky sample, OREX-800088-9, largely have compositions resembling cubanite (33.33 wt% Fe, 16.67 wt% Cu). The compositions of Cu-sulfides in angular samples OREX-800055-16 and OREX-800055-18 range from chalcopyrite (25 wt% Fe, 25 wt% Cu) to CuFe₄S₅ (40 wt% Fe, 10 wt% Cu).

The detection of CuFe₄S₅ is the first reported instance of this compound in any astromaterial. However, the existence of a mineral with this stoichiometry remains a subject of debate [6], and follow-on structural analysis is planned. This phase occurs as part of a larger sulfide assemblage encased in carbonate, suggesting low-temperature precipitation from a fluid.

Cubanite can help confirm or refine constraints on Bennu's parent body environment, as its structure serves as an effective thermometer [5]. The wider range of Cu-sulfide compositions in angular samples suggests that they experienced more extensive alteration than the hummocky sample. Additionally, the CuFe_4S_5 grain offers new insights into Cu-sulfide mineralogy and may help refine the existing Cu-Fe-S phase diagram [5,6]. This study advances our understanding of Bennu's history and contextualizes the samples within previous analyses.

Supported by NASA under Contract NNM10AA11C.

References: [1] Lauretta D.S. and Connolly, H.C., Jr. et al. (2024) *MAPS*, *59*, 2453-2486. [2] Schrader D.L. et al. (2021) *GCA*, *303*, 66-91. [3] Chaves L. et al (2024) *LPSC LV*, abstract #1586. [4] Bullock E.S. et al (2005) *GCA*, *69*, 2687-2700. [5] Berger E.L. et al (2011) *GCA*, *75*, 3501-3513. [6] McKinstry H. (1959) *Econ. Geol.*, *54*, 975-1001.

¹University of Arizona

²American Museum of Natural History

³Rowan University