Methane dynamics and its relevance for carbon budgets in a temperate salt marsh

RODRIGO VARGAS

University of Delaware

Understanding the fate and cycling of carbon in coastal ecosystems is critical for understanding the global carbon budget. Salt marshes are considered large carbon reservoirs and are part of blue carbon ecosystems. This presentation will discuss recent findings on carbon sources, sinks, and fluxes across sediments, water, plants, and the atmosphere in a temperate salt marsh. Early studies suggested that the ecosystem acted as a net carbon sink, but this expectation has been revisited when complemented with information on vertical and lateral carbon fluxes of CH₄. The study site was an overall net carbon source to the atmosphere, with annual emissions of methane contributing to achieving this net source. Our results show that tidal creeks are potential hotspots for CH₄ emissions and could contribute to lateral transport of CH4 to the coastal ocean due to supersaturation of CH₄ (>6,000 µmol/mol) in water. Furthermore, we found unexpectedly high CH₄ concentrations up to 145,000 µmol mol⁻¹ positively correlated with S²⁻ (salinity range: 6.6-14.5 ppt). CH₄ and CO₂ within the soil pore water were produced from young carbon, with most Δ¹⁴C-CH₄ and Δ^{14} C-CO₂ values at or above modern. We found evidence that CH₄ within soils was produced by methylotrophic and hydrogenotrophic methanogenesis. Several pathways exist after CH₄ is produced, including diffusion into the atmosphere, CH₄ oxidation, and lateral export to adjacent tidal creeks, the latter being the most likely dominant flux. Our results highlight the potential for high CH₄ production, the need to understand the underlying biogeochemical controls and the challenges of evaluating CH4 to accurately account for carbon budgets in salt marshes.