Hydrodynamic and geochemical controls on denitrification rates and products in wetland soils

TIMOTHY VADAS, RANDI MENDES AND CODY EXLEY University of Connecticut

Denitrification requires both organic carbon (C) as an electron donor and Cu as an enzyme cofactor in NosZ. C availability is already a known control on denitrification, but Cu availability in certain conditions could be a limiting factor to NosZ synthesis and lead to enzyme inactivation. In wetland environments, iron oxides are constantly undergoing dissolution and precipitation, all the while generating coprecipitates of C and Cu that alters the availability of these species to microorganisms. Two types of experiments were established, first with microcosms to explore the role of Fe and C coprecipitation on Cu and C availability to denitrifiers, and second, column scale hydrodynamic experiments to measure net denitrification at a fixed Fe:C ratio. Microcosms were established with various ratios of Fe, C (with either humic acids and/or simple sugars), Cu and a fixed concentration of NO₃ in solution with some wetland soil slurry. Systems were allowed to react for 24 hours, then flushed with He. Measurements of CO₂ and N₂O were taken to measure denitrification and carbon mineralization rates. Under conditions with Fe added, available Cu concentrations dropped by about 85%. Generally, those same conditions resulted in higher N₂O fluxes, in one case with up to 8-fold higher rates, suggesting an impact on denitrification rates due to Cu availability. When establishing soil columns with floodplain soils with fixed typical Fe, C and NO₃ concentrations and some with added labile C, we examined the difference in denitrification rates over varying flooding hydroperiods. In this case, net denitrification was measured using a membrane inlet mass spectrometer. Results showed that denitrification rates were heavily influenced by hydroperiod and carbon availability, and carbon availability played a larger role during longer hydroperiods. Rates of denitrification after 2 days of flooding increased by about 2-fold, or 5-fold with added C, and after 3 days by about 10-fold and 80fold with added C. While extended hydroperiods may increase net denitrification, the availability of C and Cu based on the soil Fe conditions play a role in the magnitude of change and the proportion of N₂O produced in the process.