Unravelling the origin of magmatichydrothermal hyper-enrichment of Sb on the seafloor: insights from the unique Kolumbo SMS diffuser vents

STEPHANOS KILIAS 1 , ANGELIKI PAPOUTSA 1 , **REVEKKA AVOUKATOU** 1 , NIKOLAOS ZEGKINOGLOU 1 , VASILIOS PLETSAS 1 , PARASKEVI NOMIKOU 1 , PARASKEVI POLYMENAKOU 2 , ANDREA SOMOGYI 3 AND QASID AHMAD 4

¹National and Kapodistrian University of Athens

Antimony is an important CRM for the EU, therefore, its sustainable supply greatly depends on understanding the Sb-ore precipitation mechanisms[1]. Fluid temperature decrease is the main mechanism for stibnite precipitation in epithermal deposits on land[2], meanwhile, Sb ore-mineralization in submarine hydrothermal systems is still unresolved[3]. Here, we investigated the hyper-enrichment of Sb in modern boiling SMS diffusers, Aegean Kolumbo submarine arc-volcano. Antimony mineralization includes stibnite and Sb-sulfosalts (semseyite and meneghinite), where the average and maximum concentrations of Sb (8,330 mg/kg and 2.2 wt.%, respectively) are the highest reported from modern SMS. LA-ICP-MS analyses showed a unique enrichment of Sb in all sulfide phases present, i.e., ≤ 9.8 wt.% in galena, meanwhile depth profiles in stibnite displayed spikes implying the presence of polymetallic(Zn-Ag-Tl-Au) nanoparticles. Depth profiles for Sb in pyrite exhibit both smooth and spiky parts indicating nanoparticulate and lattice bound Sb[5]. Synchrotron μXRF mapping showed oscillatory zoned pyrite with respect to Sb, whereas spatial distribution of Sb/Pb(≤0.5) vs. Tl/Pb(≤0.02) ratios indicated boiling-induced precipitatio[6], and alternated boiling-dominated, and fluidseawater mixing-dominated zones. Geochemical and microtextural evidence showed that Sb-rich SMS mineralization has been formed by fluids undergoing multiple recurrent intenseboiling and/or flashing, or gentle and/or non-boiling events. Boiling in Kolumbo is supported by: (1) the high contents of Sb, and, As, Hg, and Tl, as these metal(loid)s are easily mobilized in the vapor phase[4]; and (2) the evolving and dynamic magmatichydrothermal system of Kolumbo which can control fluxes of magmatic volatiles and metal(loid)s[4],[7]. Furthermore, evolving Kolumbo magmatic-hydrothermal system could include periods of magmatic quiescence that results in a seawaterdominated hydrothermal fluid[4],[7]. Therefore, Sb hyperenrichment highly depends on magmatic degassing and variable degrees of fluid-seawater mixing and fluid boiling precipitation.

References

[1] European Commission (2023) [2] Kodera et al. (2024) Mineralium Deposita, 1-17 [3] Dekov et al. (2024) American

Mineralogist, 109(10), 1819-1833 [4] Zegkinoglou et al. (2023) Geology, 51(11), 1072–1076 [5] George et al. (2019) Ore Geology Reviews, 107, 364-380 [6] Falkenberg et al. (2021) Geochimica et Cosmochimica Acta, 307, 105-132 [7] Hector et al. (2024) Mineralium Deposita, 59, 1229-1248

²Hellenic Centre for Marine Research

³Synchrotron SOLEIL, L'orme des merisiers, Saint Aubin BP48, 91192 Gif sur Yvette Cedex, France

⁴Université de Lorraine, CNRS, CRPG