
C₄₀ ALKENONES AS A POTENTIAL SEA SURFACE TEMPERATURE PROXY FOR THE CRETACEOUS

KELSEY DOIRON¹, SASKIA FRAUENSCHUH², HANYU LI², MANUELA NIAMKE³, FRANCIEN PETERSE², PETER K BIJL², ANN PEARSON¹ AND SIMON C BRASSELL⁴

The primary focus in the application of alkenones as paleotemperature proxies has been on C₃₇ compounds, which are usually the most abundant components observed in both algal cultures and in sediments. Instances of applications of other alkenone homologs, typically C38 components, are rare. Yet the utility of sedimentary C₃₇ alkenone compositions as molecular SST proxies is constrained by two factors associated with triunsaturated alkenones. First, the progressive decrease in the proportion of the C_{37:3} alkenone as temperature increases results in U^{K'}₃₇ values of unity above 28 °C, which precludes assessment of SSTs above this temperature limit. However, recent evidence suggests that application of UK'38 based on C38 alken-2-ones $([C_{38:2Me}])/([C_{38:2Me} + C_{38:3Me}]))$, affords a temperature limit higher than that of UK'37. Second, the initial appearance of triunsaturated alkenones was thought, until recently, to be in the early Eocene, thereby restricting the temporal range of the alkenone SST proxy. Recognition of a C40 triunsaturated alken-3one (C_{40.3}) in a Cenomanian-Turonian sediment sequence associated with OAE2 (Ocean Anoxic Event 2) from high southern latitudes in the Mentelle Basin has now revised this temporal limit. Moreover, calculation of the UK' and index $([C_{40:2Et}])/([C_{40:2Et}+C_{40:3Et}]))$ for this interval revealed temporal shifts that likely reflect variations in SST during OAE2.

Campanian to Paleocene (\sim 76-60 Ma) sediments recovered from the Transkei Basin (Hole U1581B), offshore South Africa, during IODP Expedition 392 contain series of C_{37} - C_{40} alkenones, often expanding their temporal ranges. These data confirm disparities between alkenone distributions for this period and those in extant haptophytes. The Cretaceous interval from the Transkei Basin sedimentary succession contains $C_{40:2}$ and $C_{40:3}$ alken-3-ones ($\it{Fig. 1}$), with the former often the dominant or only alkenone detected. Their dual occurrence enabled calculation of the $U^{K'}_{40}$ index, which shows a cooling trend during the late Cretaceous ($\it{Fig. 1}$), consistent with evidence from TEX $_{86}$ records. Thus, C_{40} alkenones may enable extension of alkenones as an SST proxy to the Cretaceous, especially if trends in their profiles can be further validated through direct comparison with TEX $_{86}$ profiles.

Fig. 1: Stratigraphic records of alkenones in the sediment sequence recovered from Site utility of the Utility

¹Harvard University

²Utrecht University

³Xavier University of Louisiana

⁴Indiana University