Determination of Fe³⁺ and Fe²⁺ partition coefficients between pyroxenes and basaltic melt with insitu synchrotron Mössbauer spectroscopy

JINTUAN WANG¹, GIULIA MARRAS² AND VINCENZO STAGNO²

¹Guangzhou Institute of Geochemistry, Chinese Academy of Sciences

The redox variations during magmatic processes are mainly controlled by the partition coefficients of Fe³⁺ and Fe²⁺ between minerals and melts (DFe³⁺, DFe²⁺ and DFe³⁺/DFe²⁺). However, the mineral/melt DFe³⁺ and DFe²⁺ are sparsely reported due to the difficulties in determining Fe³⁺ content of the minerals in quenched experimental run products. Recent progress in the use of synchrotron radiation sources has developed new frontiers in the study of Fe³⁺ partitioning between minerals and melts. In this study, we analyzed Fe³⁺ content of experimental pyroxenes and melt with the in-situ synchrotron Mössbauer spectroscopy using a beam size as small as $< 10 \mu m$ and determined accurate DFe³⁺ and DFe²⁺ for orthopyroxene (opx), clinopyroxene (cpx) and spinel (spl) crystallized at the equilibrium P and T of 1.3 GPa and 1200 °C. The results show that the DFe $^{3+}$ /DFe $^{2+}$ are < 1 for opx and > 1 for cpx and spl. It is, therefore, expected that during partial melting of mantle spinel peridotite, the consumption of opx will decrease Fe³⁺/FeT and fO₂ of the magma, while the consumption of cpx and spl has the opposite effect. In contrast, the crystallization of opx from basaltic magma tends to increase Fe^{3+}/Fe_T and fO_2 of the magma.

²Department of Earth Sciences, Sapienza University of Rome