Regional ⁴He Basement Flux Assessment in South Australia: Implications for H₂ Transport

ZAK MILNER¹, JON GLUYAS¹, KEN MCCAFFREY¹, BOB HOLDSWORTH¹, DR. DARREN GRÖCKE, DPHIL¹, DARREN HILLEGONDS², THOMAS RENSHAW², CHRIS J BALLENTINE² AND PHILIPPA ASCOUGH³

Natural hydrogen (H_2) is often found in subsurface gas systems and, if harnessed, could play a significant role in the energy transition [1]. In crustal environments, H_2 is primarily generated through water radiolysis—alongside the production of helium-4 (4 He)—and iron reduction.

Understanding the processes governing H_2 generation, migration, accumulation, and preservation is crucial for exploration efforts. South Australia presents a particularly promising setting for studying these principles, with recorded gas occurrences reaching up to 95.8% H_2 [2].

This study investigates noble gas isotopes (He to Xe) in groundwater samples from 19 locations across the Yorke Peninsula and Adelaide Superbasin. Radiocarbon dating enables the residence time of the groundwater to be derived and the basement ⁴He flux into it determined.

We compare 4 He basement flux with modelled 4 He production from uranium (U) and thorium (Th) decay to evaluate how crustal 4 He migrates into regional groundwater aquifers. Given the similar migration behaviour of 4 He and H₂ [3], this approach serves as a valuable proxy for subsurface H₂ transport and can be applied to other geological settings with high natural H₂ potential.

- [1] Sherwood Lollar, B., Ballentine, C.J., & Gluyas, J.G. (2014). The contribution of the Precambrian continental lithosphere to global H_2 production. *Nature*, 516, 379–382.
- [2] Gold Hydrogen Ltd. (2024). Hydrogen purity hits new highs in South Australia testing. *Press release*, (2024). Available at: https://www.goldhydrogen.com.au/updates/hydrogen-purity-hits-new-highs-in-south-australia-testing/
- [3] Cheng, A., Sherwood Lollar, B., Gluyas, J.G., & Ballentine, C.J. (2023). Primary N_2 -He gas field formation in intracratonic sedimentary basins. *Nature*, 615, 94–99.

¹Durham University

²University of Oxford

³Scottish Universities Environmental Research Centre