Method Development and Applications for *In Situ* Rb-Sr Isotopic Analyses by Femtosecond LA-MC-ICPMS/MS

HAYWARD MELTON 1 , TENG EE (TONY) YAP 1 , ALICIA MARIE CRUZ-URIBE 2 AND FRANÇOIS L.H. TISSOT 1

The Rb-Sr beta-decay system is a fundamental tool in geochronology and geoforensics, widely applied to terrestrial, lunar, and Martian samples [1–3]. This technique is based on the radioactive decay of ⁸⁷Rb to ⁸⁷Sr and takes advantage of the substitution of Rb and Sr for K and Ca in rock-forming minerals which often have a range of Rb/Sr ratios. Over time, the decay of ⁸⁷Rb to ⁸⁷Sr increases the ⁸⁷Sr/⁸⁶Sr ratio, allowing us to construct an isochron and determine the crystallization age of a sample and its initial ⁸⁷Sr/⁸⁶Sr ratio.

Traditional Rb-Sr dating requires sample processing to mitigate the $^{87}\text{Rb-}^{87}\text{Sr}$ isobaric interference before analysis [4]. We develop a method integrating a femtosecond (fs) ESL NWRFemto 257nm LA system with a Thermo Fisher Scientific $^{\text{TM}}$ Neoma MC-ICPMS/MS, featuring a dual Wien mass filter and a collision-reaction cell for online Rb-Sr separation [5-7]. Using SF $_6$ gas, we selectively fluorinate Sr, shifting it by +19 m/z, and optimize key laser parameters.

We analyze reference glasses from NIST, MPI-DING, and USGS, covering a broad range of Rb-Sr compositions. Our results show $^{87}\mathrm{Sr}/^{86}\mathrm{Sr}$ accuracies exceeding 0.03% and 87Rb/86Sr accuracies within 5%, with precisions of ~1‰ and ~3% (2SE), respectively. Even with the benefits of an fs-LA system [8] this is still an unexpected degree of elemental fractionation which is likely attributable to transport effects.

Our method advances high-precision *in situ* Rb-Sr dating with broad applicability across geologic and planetary sciences. We demonstrate its potential for dating terrestrial feldspars and micas, tracing turquoise trade routes, and analyzing Martian meteorites, a subset of which will be presented.

References: [1] Papanastassiou D.A. & Wasserburg G.J. (1970) EPSL, 8, 269-278. [2] Jäger E. & Hunziker J.C. (1979) Lectures in Isotope Geology, 13-26. [3] Borg L.E. et al. (1999) Science, 286, 90-94. [4] Vanhaecke F. et al. (2001) Fresenius J. Anal. Chem., 371, 915-920. [5] Bevan D. et al. (2021) JAAS, 36, 917-931. [6] Dauphas N. et al. (2022) JAAS, 37, 2420-2441. [7] Cruz-Uribe A.M. et al. (2023) Geostand. Geoanalytical Res., 47, 795-809. [8] Ingo, H. and F. Von Blanckenburg (2007) Spectro. Acta Part B, 62, 410-422.

¹California Institute of Technology

²University of Maine