Heavy carbon in Iceland's primordial reservoir

JOSHUA J SHEA¹, OLIVER SHORTTLE¹, JOHN
MACLENNAN¹, ERY C HUGHES², GLENN GAETANI³
AND BRIAN DAVID MONTELEONE³

¹University of Cambridge

Carbon degasses early during basaltic magma ascent, making direct estimates of mantle carbon challenging. To circumvent this, geochemical proxies such as CO2/Ba are used to infer magmatic carbon inventories and mantle reservoirs. Recent work suggests that the ancient mantle, sampled by deep-rooted plumes, may harbour carbon concentrations up to 20 times higher than the shallow mantle [1]. However, these results rely on CO₂/Ba and whether CO₂ is only altered by degassing compared to similarly incompatible elements, and not processes that may disrupt this proxy, such as magma mixing [2]. Here, we report the first high-precision δ^{13} C values, along with major and trace element data from bubble-free olivine-hosted melt inclusions from Miðfell, Iceland, a high 4He/3He locality linked to a deep mantle primordial reservoir [3-5]. Our results indicate evidence for pre-entrapment CO₂ degassing as evidenced by CO₂/Ba < 23, which fractionates δ^{13} C toward upper mantle values (δ^{13} C -7.5 ± 1.4 [6]), yielding δ^{13} C of -2.74 to -8.66 ‰ with CO₂ < 1114 µg/g. In contrast, inclusions with CO₂ between 425 and 1850 µg/g and higher CO₂/Ba between 91 and 219 preserve primary δ¹³C values ranging from δ^{13} C 0.58 to -2.92 ‰, reflecting an isotopically heavy carbon source distinct from the upper mantle. These findings support the presence of a deep and distinct carbon-rich primordial reservoir beneath Iceland consistent with a cosmochemical source. This has important implications for reconstructing mantle carbon inventories and refining volatile cycles.

- [1] Miller et al. (2019) Earth and Planet. Sci. Lett. 523:115699
- [2] Mathews et al. (2017) Earth and Planet. Sci. Lett. 480:1-14
- [3] Mukhopadhyay (2012) Nat. 486:7401
- [4] Péron & Mukhopadhyay (2017) Earth and Planet. Sci. Lett. 593:117655
 - [5] Péron et al. (2021) Nat. 600:7889
 - [6] Moussallam et al. (2025) Comm. Earth and Env. 6:1

²Te Pū Ao GNS Science

³Woods Hole Oceanographic Institution