VCOF-CRDS as a versatile, highprecision method for cap-delta measurements in water, carbonates and CO₂

JUSTIN CHAILLOT 1 , SAMIR KASSI 2 , MATHIEU CASADO 3 , AMAELLE LANDAIS 4 AND MATHIEU DAËRON 1

¹Laboratoire des Sciences du Climat et de l'Environnement (LSCE/IPSL)

²LIPhy

³LSCE

⁴LSCE - Institut Pierre Simon Laplace, France

The past year saw the publication of two articles documenting the application of VCOF-CRDS (V-Cavity Optical Feedback Cavity Ring-Down Spectroscopy, a spectroscopic technique borne from a crossing between high-performance optical spectroscopy and optical clock methods) to geochemical measurements. VCOF-CRDS is now operational for measuring water isotopes (δ^2 H, δ^{18} O) at very low humidity (10 ppmv) with an accuracy suitable for applications to glaciology. Furthermore, by self-referencing the laser source relative to high-resolution spectroscopic features of the water molecule, we will soon be able to deploy VCOF-CRDS instrument in the field, in extreme environmental conditions (Concordia station, Antarctica) [1]. Furthermore, we demonstrated the ability to directly measure Δ^{17} O in CO₂ with <10 ppm accuracy and essentially perfect (\approx 1 ppm) metrological linearity, enabling high-precision Δ^{17} O measurements on carbonates (30-40 µmol per analysis) and water (150-300 μL per analysis) [2].

VCOF-CRDS is also a versatile approach applicable to other analytes, as illustrated by measurements of Δ^{33} S in H2S [3] and ongoing attempts to target CO and CH₄ isotopologues.

- [1] Casado et al. 2024 10.5194/amt-17-4599-2024
- [2] Chaillot et al. 2025 10.1016/j.chemgeo.2024.122450
- [3] Chaillot et al. 2023 10.1039/D2VA00104G