Improved Resolution of $\delta^{11}B$ -based CO_2 estimates over the Middle Eocene Climatic Optimum

EMMELINE GRAY 1 , RUCHI . 2 AND MICHAEL J. HENEHAN 1

The Middle Eocene Climatic Optimum (MECO, ~40.1 – 40.5 Ma) was warming event where declining benthic $\delta^{18}O$ values would suggest a rise in global temperatures of 3-6 °C¹. It differs from earlier Eocene hyperthermal events in its much longer period of warming (around 400 kyr, compared to <10kyr) and its lack of a global negative benthic $\delta^{13}C$ excursion coincident with the onset of warming. Initial application of the $\delta^{11}B$ -pH proxy to planktic foraminifera to reconstruct pCO₂ change over the MECO found that changes in pCO₂ were asynchronous with global $\delta^{18}O$ change, leading to speculation that some change in $\delta^{18}O$ may be due to cryosphere fluctuations². More recent work has updated the age-models of some of the sites involved³ and potential for age model discrepancies to decouple trends in pCO₂ and $\delta^{18}O$ has been mooted⁴.

Here we present new planktic foraminifera $\delta^{11}B$ data for sites ODP 702 and ODP 1260, increasing the resolution of CO_2 records across the MECO. We discuss the temporal trends in pCO₂ relative to changes in $\delta^{18}O$, weathering sensitive isotopes, and circulation change, in light also of new astronomically tuned age models.

- Bohaty, S. M. & Zachos, J. C. (2003) Geology 31: 1017–1020.
- 2. Henehan, M. J. et al. (2020) *Paleoceanography and Paleoclimatology* **35**: e2019PA003713.
- 3. Westerhold, T. et al. (2020) Science 369: 1383–1387.
- Westerhold, T. et al. (2024) Paleoceanography and Paleoclimatology 39: e2024PA004932.

¹University of Bristol

²Deutsches GeoForschungsZentrum GFZ