Calcium Isotopes in Scheelite and Skarn Systems: Advances, Complexities, and Future Directions

MICHAEL A. ANTONELLI¹, DREW SYVERSON², EDWIN SCHAUBLE³, ADEDAPO NOAH AWOLAYO⁴, GUY N EVANS⁵, CYRIL CHELLE-MICHOU⁶ AND WILLIAM E SEYFRIED JR.⁷

¹University of Houston

Archetypal skarn deposits are formed through the interaction between magmatic fluids and crustal carbonate bodies (e.g., limestones, marble, etc.). Acidic fluids exsolved from the magma drive hydrothermal dissolution-precipitation reactions in the host carbonates ('exoskarns') that generate permeability and promote additional fluid flow, leading to metasomatic formation of calcsilicates and precipitation of economically-important ore minerals, including scheelite (CaWO₄). Given the Ca-rich nature of these deposits, stable Ca isotopes (δ^{44} Ca) have the potential to be used as precipitation-rate proxies [1] to better understand the duration of mineralization events in skarn systems. Faster precipitation rates lead to greater mineral-fluid isotopic disequilibrium, whereas slow precipitation rates approach equilibrium values, which are governed mainly by temperature. Extracting absolute precipitation rates from natural δ^{44} Ca data requires knowledge of the degree of isotopic disequilibrium along with several difficult-to-constrain parameters, including the kinetic (forward) & equilibrium mineral-fluid fractionation factors and the far-from-equilibrium mineral dissolution rates.

To help better constrain some of these parameters and explore what can be learned from δ^{44} Ca data in natural skarns, we present δ^{44} Ca data from hydrothermal scheelite precipitation experiments (300-400 °C, ~0.4 kbar) and compare these with new *ab-initio* predictions. Fluid time-series and final scheelite precipitates can be modelled with single fractionation factors (1000ln $\alpha_{\text{sch-fluid}}$ of -0.45 and -0.20 at 300°C and 400°C, respectively) suggesting formation near isotopic equilibrium. The difference between $1000 \ln \alpha_{\text{sch-fluid}}$ at 300°C vs. 400°C (-0.25) also agrees well with *ab-initio* predictions (-0.21), yet both experimental values are offset from our predictions by approx. +0.3%. We find a similar offset when comparing our *ab-initio* predictions for anhydrite with previous hydrothermal experiments [2].

Given that mineral-fluid predictions are tied to the assumption that $1000 ln\alpha_{calcite-water} \approx 0$ at high-temperatures, the consistent offset we observe points to a possible inversion in the fractionation factor between calcite and water at hydrothermal temperatures, potentially due to increasing Ca^{2+} coordination in fluids [3]. Open questions and implications from the

experimental and *ab-initio* data will be discussed alongside data from two skarn deposits, where calc-silicate minerals record δ^{44} Ca variations >1‰.

[1] DePaolo, 2011 (GCA) [2] Syverson et al., 2018 (GCA) [3] Moison et al., 2024 (J Phys Chem B)

²UNC Charlotte

³University of California, Los Angeles

⁴McMaster University

⁵University of Minnesota

⁶ETH Zürich

⁷University of Minnesota - Twin Cities