Sulfur isotopes at subduction zones: sediment heterogeneity and arc homogeneity

ALLY PECCIA¹, **TERRY PLANK**², SHUO DING³, PROF. ALESSANDRO AIUPPA⁴, SALVATRICE VIZZINI⁵, ZOLTÁN TARACSÁK⁶, BRIAN DAVID MONTELEONE⁷, DAVID PYLE⁸ AND TAMSIN A. MATHER⁸

Due to its presence as both sulfide and sulfate in the marine realm, sulfur has considerable leverage in its effect on the redox budget and δ³⁴S of subducted materials. Of the lithologies entering subducting zones, sediments have the largest range in δ³⁴S and thus are expected to drive considerable differences in the bulk δ^{34} S input from arc to arc. Motivated by this prediction, we have carried out the most comprehensive work to date quantifying sulfur fluxes and δ^{34} S of subducting sediments. Our focus has been on four subduction zones that encompass a variety of sedimentary lithologies: Central America (biogenic), Aleutians (turbidite-dominated), Marianas volcaniclastic) and Tonga (red clay and chert). In a parallel effort, we have also measured δ^{34} S in melt inclusions via SIMS in volcanic suites from these same subduction zones in order to assess S recycling from sediment to arc. The surprising result is the small range in arc δ^{34} S despite the extreme heterogeneity in sediment input. Using a combined approach of XRF core scanning, ICP-MS and EA-IRMS, we measure S concentrations and δ^{34} S along 100s of meters of drill cores. The subducting sedimentary sections at Central America and Alaska have pyritedominated bulk δ^{34} S (-14 and -4‰, respectively) while the Marianas and Tonga sections have sulfate-dominated bulk $\delta^{34}S$ (+16.5 and +19.5\%, respectively). Despite this extreme variation in input, undegassed arc magma δ^{34} S estimates (based on our melt inclusion data) span from +1 to +5‰, with most between +2 and +3%, but all notably higher than MORB ($\leq 0\%$). Thus, the sulfur recycled to arcs is pervasively shifted to a narrow range of enriched δ^{34} S compositions relative to the sediment input. We propose two processes to explain this observation: 1) a substantial contribution of MORB sulfur from the subducted oceanic crust that modulates sediment sulfur, and 2) widespread oxidation of slab pyrite to fluid-mobile sulfate, which preferentially transports ³⁴S (and high oxidative power) to the sub-arc mantle source. The complement of this process is the subduction of reduced, low $\delta^{34}S$ residual slabs to the deeper mantle.

¹Lamont-Doherty Earth Observatory

²Lamont-Doherty Earth Observatory, Columbia University

³University of Florida

⁴University of Palermo, Dipartimento di Scienze della Terra e del Mare

⁵University of Palermo

⁶University of Cambridge

⁷Woods Hole Oceanographic Institution

⁸University of Oxford