Short-term Antarctic Ice-Sheet dynamics during the late Oligocene: multi-proxy records from ODP Site 689

DR. LAYLA CREAC'H¹, SWAANTJE BRZELINSKI¹, JÖRG LIPPOLD¹, MARCUS GUTJAHR², MARTIN FRANK² AND OLIVER FRIEDRICH¹

Palaeoceanographic records from the Oligocene (33.9-23.03 Ma) offer valuable insights into Antarctic Ice Sheet (AIS) dynamics in a world warmer-than-today. While the long-term evolution of Oligocene glaciations is relatively well-known, our knowledge of short-term (i.e., orbital to suborbital scale) AIS dynamics is still limited. Here, we present a high-resolution multi-proxy record from Ocean Drilling Program Site 689 (Maud Rise, Southern Ocean) to investigate the short-term AIS variability during the late Oligocene (26.2–25.2 Ma). Variations in ice volume were quantified using the stable oxygen isotope composition of seawater (δ18O_{SW}) inferred from benthic foraminiferal δ¹⁸O and Mg/Ca-based bottom-water temperatures. Our δ¹⁸O_{SW} record reflects large, eccentricity-paced ice volume fluctuations during the studied interval. These climate state dependent fluctuations exerted a significant control on the different types of rocks eroded as the AIS advanced/retreated, which can be monitored by the radiogenic isotope compositions of detrital neodymium (Nd) and authigenic lead (Pb) in deep marine sediments adjacent to the AIS. These isotopic signatures co-vary with $\delta^{18}O_{SW}$ for most of the record documenting changes in sediment provenance and weathering regime driven by icesheet variability. In addition, the rather invariant but pronounced incongruent Pb isotope signal observed confirms the presence of a major East AIS during our entire studied interval. Our results emphasize the sensitivity of radiogenic isotopes to past ice-sheet dynamics and provide new geochemical evidence of AIS fluctuations during the late Oligocene on orbital to suborbital time scales.

¹Heidelberg University

²GEOMAR Helmholtz Centre for Ocean Research Kiel