Lithium isotopes in Holocene speleothems from the Yorkshire Dales: testing their application as weathering regime tracers

KATIE BROWN¹, LUCY WRIGHT^{1,2}, TIM ATKINSON¹, PHILIP HOPLEY³ AND DR. DAVID J WILSON¹

The chemical weathering of continental silicate rocks is a key feedback mechanism for removing atmospheric CO_2 over thousand to million-year-timescales. Measuring lithium (Li) isotopes in speleothems may provide an avenue to determine changes in local terrestrial silicate weathering processes in deglacial environments. The ^7Li value of drip-waters from which speleothems precipitate is hypothesised to be determined by local changes in weathering congruency: the ratio of primary mineral dissolution to secondary mineral formation. To test this idea, we analysed ^7Li values in speleothems LH-70s-1, LH-70s-2, and LH-70s-3 spanning 12.3 ka - 1.0 ka from Lancaster Hole in the Yorkshire Dales. These data were compared with previously measured ^{13}C , ^{18}O , Mg/Ca, and Sr/Ca records based on U-Th age models.

Over millennial timescales, our Li isotope records do not consistently replicate across speleothems, indicating that shortterm fluctuations in 7Li values arise from localised changes in flow pathways and epikarst residence times. Broadly correlated ⁷Li, ¹³C, Mg/Ca, and Sr/Ca values imply increased epikarst residence times when ⁷Li values are elevated. This scenario reflects increased prior calcite precipitation, decreased drip rates, and extended water-rock interaction times. In this setting, the ⁷Li values appear to be controlled by extended interaction times of water with glacial till washed into flow pathways through dolines. However, this correlation is not consistent for the entire length of the records. In LH-70s-1, an excursion to low ⁷Li values coupled with elevated Mg/Ca, Sr/Ca, and ¹³C values is observed prior to 11 ka, immediately succeeding the Younger Dryas. This finding may indicate that significant regional changes in weathering congruency related to the increased supply and dissolution of primary silicates following the Younger Dryas, together with increased surface runoff due to heightened permeability and climatic water surplus, may override localised hydrological controls on speleothem ⁷Li values to drive a regional signal over longer timescales.

¹University College London

²University of Oxford

³Birkbeck, University of London