Radiolytic H₂ generation in the Earth's crust

EDWARD BLACKMAN¹, CHRIS J BALLENTINE¹, JON WADE¹ AND JON GLUYAS²

Over thirty geological processes can generate molecular hydrogen (H₂) [1]. Of these, serpentinization, which contributes 55-80% of H₂ emanating from the continental crust, and radiolysis (20–45%), are considered the major pathways [2]. Hence, most commercial research interest is focussed upon serpentinization (water + Fe²⁺ bearing minerals). Radiolytic H₂ (dissociation of water molecules by ionizing radiation) is principally championed in astro-biological circles as an abiotic energy source in the deep biosphere, rather than a commercially exploitable resource [3]. However, radiolytic H2 has been observed on the North American, African, European and Australian continents, and is predicted to exist on Mars and other rocky celestial bodies [3-9]. Here we review the potential for radiolysis as a H₂ source mechanism and re-evaluate its significance within the natural hydrogen system. While the physical stage – radionuclide decay and particle emission – is well understood, the chemical stages of radiolysis in geological fluids remain less constrained. The varying composition of cations, anions, and short-lived radical species in crustal fluids can significantly influence the yield of radiolytic H₂ [10,11]. Change in H₂ yield may have implications for the deep biosphere as well as natural H₂ exploration. Further research is required to better constrain how crustal fluids dissociate and recombine to

- [1] Milkov, A. V. (2022). Earth-Science Reviews 230, 104063
- [2] Lollar, B. S. et al. (2014). Nature 516, 379-382
- [3] Dzaugis, M. et al. (2018). Astrobiology 18, 1137-1146
- [4] Warr, O. et al. (2019). Chemical Geology 530, 119322
- [5] Lin, L.-H. et al. (2005). Geochemistry, Geophysics, Geosystems 6
- [6] Curtis, D. B. et al. (1983). Svensk Kaernbraenslefoersoerjning AB.
- [7] Parnell, J. et al. (2017). Minerals 7, 130
- [8] Boreham, C. J. et al. (2021). Chemical Geology 575, 120098
- [9] Bouquet, A. et al. (2017). The Astrophysical Journal Letters 840, L8
- [10] Hata, K. et al. (2016). Journal of Nuclear Science and Technology 53, 1183-1191
- [11] LaVerne, J. A. et al. (2009). Radiation Physics and Chemistry 78, 1148-1152

¹University of Oxford

²Durham University