Timing of the global decrease in the ¹⁸²W/¹⁸⁴W of the accessible silicate Earth

YAN SONG¹, DANIEL STUBBS¹, ANDREAS PETERSSON², ANDERS SCHERSTÉN³, ANTHONY I.S. KEMP⁴, CHRISTOPHER D. COATH¹ AND TIM ELLIOTT¹

The 182 Hf- 182 W decay system ($t_{1/2}$ =8.9 Ma) is a powerful tool for tracking the history of convection in the Earth's mantle. Many Archean samples show 182 W/ 184 W compositions that are \sim 10ppm more radiogenic than modern continental crust and the upper mantle. This implies that substantial unradiogenic material has been stirred into the upper mantle some time since the Archean. To account for this observation, several hypotheses have been proposed, e.g. addition of late veneer materials [1], early silicate differentiation [2], or core-mantle interaction [3].

The timing and rate of change of ¹⁸²W/¹⁸⁴W from elevated to modern values can provide clues on the process involved but both currently remain uncertain. Previous studies suggest that radiogenic ¹⁸²W/¹⁸⁴W ratios persisted in the upper mantle until at least 2.4 Ga [4,5], while a 2 Ga granite from Guernsey provides a tentative first marker of modern crustal values [1]. However, the sample coverage from the period between ~2.4 and ~1 Ga is sparse, making the exact timing and style of the change in ¹⁸²W/¹⁸⁴W ratios difficult to constrain.

To address this problem, we present high-precision ¹⁸²W/¹⁸⁴W data from crustal and mantle-derived rocks of 4 different Proterozoic orogens: Birimian Orogen (West Africa; 2.20–2.09 Ga), Halls Creek Orogen (northern Australia; 1.85 Ga), Svecofennian Orogen (southern Sweden; 1.88–1.80 Ga), and Sveconorwegian Orogen (southern Sweden; 1.73–1.22 Ga). Unradiogenic ¹⁸²W signatures are identified in all four orogens, indicating that a global stepwise transition to the modern mantle-like ¹⁸²W compositions was complete by ~2.1 Ga.

- [1] Willbold et al., 2011 Nature, 477
- [2] Touboul et al., 2012. Science, 335
- [3] Rizo et al., 2019. Geochemical Perspectives Letters, 11
- [4] Puchtel et al., 2016. Geochemistry, Geophysics, Geosystems, 17
 - [5] Nakanishi et al., 2023. Chemical Geology, 617

¹University of Bristol

²University of Copenhagen

³Lund University

⁴University of Western Australia