Volatile Geochemistry of hydrothermal vent plumes over the Central Indian Ridge, 9°44'-15°33'S **WONHEE LEE**¹, HEEJUN KIM², JEONGYEON YU¹, JUNG-HUN SONG¹, DR. HYUNWOO LEE¹, WONNYON KIM², JONGUK KIM², URUMU TSUNOGAI³, NAOTO TAKAHATA⁴ AND YUJI SANO⁵ The Korea Institute of Ocean Science & Technology (KIOST) conducted a research expedition aboard the R/V ISABU in 2023, during which hydrothermal fluids were sampled from segments 2 to 5 of Central Indian Ridge (CIR), spanning from 9°44'S to 15°33'S. This study presents the concentrations and isotopic compositions of dissolved gases (e.g., H₂, He, CH₄, and CO₂) in the hydrothermal fluid samples collected from eight vent fields. Helium isotope analyses (${}^{3}\text{He}/{}^{4}\text{He} = 1.17$ to 10.23 Ra, where 1 Ra = 1.4 x 10⁻⁶) indicate distinct mantle sources, with plumederived helium in segments 2 and 3 and upper mantle contributions in segments 4 and 5. The inverse relationship between ³He/⁴He ratios and seismic S-wave velocity anomalies (dVs; -3.47 to -2.91%) beneath the region provides additional evidence for mantle heterogeneity. The δ¹³C-CO₂ values ranging from -13.5 to -7.4% (vs. V-PDB) suggest the CO₂ contributions from the mantle. Elevated H₂ (1 to 86 mol.%) and CH₄ concentrations (0.3 to 4.5 mol.%) in some hydrothermal fluid samples, along with δ^{13} C-CH₄ (-21.6 to -8.1%) and δ D-CH₄ (-196.0 to -87.0%) values, point to an abiotic formation process similar to that observed at Mid-Atlantic Ridge (MAR). This implies that reductive hydrothermal conditions in the CIR could play a crucial role in generating H₂ and CH₄. Our results suggest that mantle-derived volatiles and thermal energy could drive hydrothermal reactions within the oceanic lithosphere, facilitating seawater-crust-mantle interactions that promote H₂ production, with potential relevance for future resource exploration. ¹Seoul National University ²Korea Institute of Ocean Science & Technology ³Nagoya University ⁴University of Tokyo ⁵Kochi University