Rates of biological nitrogen fixation in Central European wetlands: $^{15}N_2$ experiments along a regional airpollution gradient and in vertical peat profiles

 $\begin{array}{c} \textbf{MARTIN NOVAK}^1, \text{ MARKETA STEPANOVA}^1, \\ \text{FRANTISEK BUZEK}^1, \text{ BOHUSLAVA CEJKOVA}^1, \text{ IVANA} \\ \text{JACKOVA}^1, \text{ HANA SANTRUCKOVA}^2, \text{ JIRI BARTA}^2, \text{ JAN} \\ \text{CURIK}^1, \text{ FRANTISEK VESELOVSKY}^1 \text{ AND LENKA} \\ \text{BURESOVA}^1 \end{array}$

¹Czech Geological Survey ²University of South Bohemia

Microbial N₂-fixation helps to sustain carbon accumulation in pristine peatlands and to remove CO₂ from the atmosphere. As breaking the triple bond of atmospheric N₂ is energy-intensive, it is reasonable to assume that increasing inputs of reactive N (N_r; NH₄⁺-N and NO₃⁻-N) via anthropogenic pollution will lead to downregulation of N2-fixation. However, recent studies indicated adaptation of diazotrophs to changing N_r inputs. To verify this assumption, we studied four Sphagnum-dominated peat bogs in the Czech Republic, differing in N. deposition by a factor of two (~16 and ~8 kg N_r ha⁻¹ yr⁻¹ in the north and south, respectively). We hypothesized that the more N_r-polluted northern sites, Velke jerabi jezero (VJ) and Cerny potok (CP), would exhibit lower biological N fixation rates (BNF) than the less polluted southern sites, Cervene blato (CB) and Zdarecka slat (ZS). Wet Sphagnum was collected in spring 2017/2024. At the end of laboratory incubations in a 15N2 atmosphere, Sphagnum exhibited an increase in d¹⁵N values from about -3 ‰, typical of all sites, to between 27 and 266 % at VJ, CP and ZS. Over the 7-day experiment, no change in d15N values was recorded at CB. The calculated BNF rates increased in the order: VJ < ZS < CP (0.8, 9.6, and 49 ug N per gram of dry Sphagnum per day, respectively). Replicated vertical peat core profiles from CP (north) and ZS (south) were subjected to a similar ¹⁵N₂ experiment. The investigated depths were 0, 10, 20, and 30 cm. In spring, ¹⁵N-tracer incubations provided the following BNF downcore gradients: from 49 to 85 ug N at CP, and from 10 to 0.2 ug N at ZS. The late summer BNF rates were around 30 ug N throughout the profile at CP, and from 47 to 97 ug N downcore at ZS (all values are for gram⁻¹ day⁻¹). A large seasonal/betweensite variability in BNF was observed. Our data indicate that atmospheric N_r inputs were not the main control of BNF in the studied Central European peat bogs. Other site characteristics, e.g., phosphorus availability, NH₄+/NO₃ ratios, and moisture conditions, served as important BNF drivers.