From Lab to Field: Streamlined CRDS-Based N₂O Isotope Analysis for Source Identification in Agricultural Soils

JULIUS C. HAVSTEEN 1 , MEHR FATIMA 2 , SIMONE BRUNAMONTI 1 , ANDREA POGÁNY 3 , THOMAS HAUSMANINGER 2 , BENJAMIN WOLF 4 , REINHARD WELL 5 AND JOACHIM MOHN 6

¹Empa, Laboratory for Air Pollution / Environmental Technology

Nitrous oxide (N₂O) is a potent greenhouse gas with a global warming potential about 300 times that of CO₂. Its rising atmospheric concentrations and critical role in climate change necessitates a deep understanding of its production and consumption pathways. Agricultural soils are the major anthropogenic source for N₂O emissions, and therefore research into the responsible biogeochemical processes, such as nitrification and denitrification, is essential for effectively assessing mitigation strategies.

Recent advances in cavity ring-down spectroscopy (CRDS) have enabled high-precision measurement of N_2O isotopic species at ambient concentrations. CRDS analysis surpasses traditional isotope ratio mass spectrometry (IRMS) with respect to its site selectivity for ^{15}N substitution and on-site capability. However, the inherent complexity of spectral fitting in CRDS measurements that arises from fundamental physical parameters such as gas matrix-dependent pressure broadening and spectral interferences as well as instrumental drift and non-linearity necessitates extensive post-processing to extract reliable data.

This work presents a comprehensive correction and calibration protocol for laser spectrometers, exemplified by N_2O isotopic data ($\delta^{15}N^{\alpha}$, $\delta^{15}N^{\beta}$, $\delta^{18}O$) obtained from a Picarro G5131-i isotopic and gas concentration analyser. While the focus application in our current work is the analysis of N_2O emitted from agricultural soils using a specific analyser model, the general MATLAB code underpinning our approach is adaptable to a wide range of gas species, i.e. analyser models or brands. Specifically, the protocol establishes the theoretical and mathematical framework required for the corrections, outlines a logical sequence for their application, and includes an error propagation analysis to quantify associated uncertainties.

Applied to N₂O isotope data from an automated setup for autonomous analysis of up to 32 bag samples collected on a weekly base from automated flux chambers on agricultural soils, our protocol significantly reduces post-processing time and

enhances the data quality. We will show exemplary data for a fertilizer study, which indicates differing shares of N_2O derived from nitrification and denitrification, providing important parameters to improve soil biogeochemical models. More generally, we aim to enable researchers to obtain high-quality isotope data from CRDS and similar instruments, ultimately contributing to standardized community guidelines for data post-processing.

²VTT Technical Research Center of Finland Ltd

³Physikalisch-Technische Bundesanstalt

⁴Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU)

⁵Thünen Institute of Climate-Smart Agriculture ⁶Empa