Comparision of summer and winter pollution effects on PM2.5 Sr radiogenic isotopic ratios from central Europe

YULIA ERBAN KOCHERGINA 1 , MARTIN NOVÁK 1 , EVA MARTINKOVÁ 1 , ONDŘEJ ŠEBEK 1 , RADIM SEIBERT 2 , MARKÉTA ŠTĚPÁNOVÁ 1 , JAN ČUŘÍK 1 AND FRANTIŠEK VESELOVSKÝ 1

¹Czech Geological Survey ²Czech Hydrometeorological Institute

Atmospheric pollution has adverse health effects on humans. We analysed concentrations and Sr isotopic ratios in fine airborne particulate matter (PM25) in three Central European cities with populations exceeding 90,000 people. Aerosol sampling in 12-h intervals was performed during summer and winter in Brno, Olomouc and Hradec Králové. Trace elements (Zn, Cu, Cd, As, and S) and PM_{2.5} concentrations were higher in winter than in summer in all studied sites; the overall mean concentration of PM_{2.5} in the air was 21 µg.m⁻³[1]. The summertime Sr concentrations are similar in all cities: 0.24 ng.m⁻³ in Brno, 0.27 ng.m⁻³ in Olomouc and 0.29 ng.m⁻³ in Hradec Králové. In winter, the Sr concentration in the air dramatically increases in all cities: 1.92 ng.m⁻³ in Brno, 0.73 ng.m⁻³ in Olomouc and 1.61 ng.m⁻³ in Hradec Králové. Martinková et al. [1] suggest that rare winter-time smog episodes cannot explain such a significant increase in seasonal pollution levels; Czech and Polish thermal power plants and household heating play a more important role. In 87Sr/86Sr isotopic composition, we also observe seasonal differences. In winter, ⁸⁷Sr/⁸⁶Sr of PM_{2.5} vary from 0.7077 to 0.7140 in Brno and Hradec Králové, from 0.7079 to 0.7134 in Olomouc. In summer, we observe wider dispersion in Sr isotopic composition, especially in Brno, where ⁸⁷Sr/⁸⁶Sr vary from 0.7087 to 0.7178. ⁸⁷Sr/⁸⁶Sr composition of PM_{2.5} in Olomouc $(^{87}Sr/^{86}Sr=0.7094-0.7147)$ is similar to $^{87}Sr/^{86}Sr$ composition of PM_{2.5} in Hradec Králové (87Sr/86Sr=0.7090–0.7135). We propose that coal combustion has a large effect on the Sr concentration in the air in winter, and therefore, we probably see a Sr isotope signal in the winter patterns from burning coal with a very homogeneous Sr isotope composition. The greater dispersion of the ⁸⁷Sr/⁸⁶Sr isotopic composition of PM_{2.5} observed in cities during the summer may be due to the larger number of pollen grains, but a more significant contribution will be from geogenic components originating from soil weathering.

[1] Martinková E., Erban Kochergina Y.V., Šebek O., Seibert R., Chrastný V., Novák M., Štěpánová M., Čuřík J., Pacherová P., Přechová E., Veselovský F., Volná V., ... (2023): Atmospheric Environment, 310, 119941