Structural characterization of lignocellulosic-based pyrolysis oil by two-dimensional mass spectrometry

MARIA VAN AGTHOVEN^{1,2}, JULIEN MAILLARD^{2,3}, MAXIME SUEUR^{1,2,3}, CHRISTOPHER A. WOOTTON⁴, PIERRE GIUSTI^{1,2,3} AND CARLOS AFONSO^{1,2}

Pyrolysis oils produced during biofuel manufacturing from lignocellulosic biomass, are complex organic mixtures with unpredictable compositions. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) enables high-confidence assignments of elemental compositions, but cannot differentiate between isomers without fragmentation [1]. Ion isolation before fragmentation is not practical for complex mixtures. Here, we use two-dimensional mass spectrometry (2D MS), in which precursor and fragment ions are correlated without isolation, for the structural characterization of pyrolysis oil.

2D mass spectra were recorded on an FT-ICR MS coupled with gated trapped ion mobility spectrometry (gTIMS) [2,3] and electron induced dissociation. For data processing, visualization, and analysis, the SPIKE and PyC2MC open-source softwares were used [4,5].

2D mass spectra enable visual identification of compounds with structural similarities from their fragmentation patterns. Resolving powers of 120,000 at m/z 400 were obtained for fragment ion peaks, and of 2000 at m/z 400 for precursor ion peaks. The autocorrelation line was extracted for elemental composition assignments, which were compared to those obtained from one-dimensional mass spectra. The correlation between precursor and fragment ion peaks was obtained for differences of the order of 10 mDa (e.g. CH₄ vs. O). Neutral loss lines were extracted and the elemental composition of the neutrals could be assigned with high confidence. Some of them corresponded to well-known compounds in pyrolysis oils (e.g. levoglucosan at C₆H₁₀O₅) and others were more unexpected [6]. Here, we show the performance of 2D MS of pyrolysis oil, the workflow that was established in SPIKE and PyC2MC, and we discuss the structural information that was gained for lignocellulosic-based biomass pyrolysis oil.

- [1] Chacón-Patiño, Mase, Maillard, Barrère-Mangote, Dayton, Afonso, Giusti & Rodgers (2023) Energy & Fuels 37, 16612–
- [2] van Agthoven, Lam, O'Connor, Rolando & Delsuc (2019) *European Biophysics Journal* 48, 213-229.
- [3] Wootton, Maillard, Thiesen, Brabeck, Schat, Rüger, Afonso & Giusti (2024) *Analytical Chemistry* 96, 11343–11352.
- [4] Chiron, Coutouly, Starck, Rolando & Delsuc (2016) arxiv/abs/1608.06777.

- [5] Sueur, Maillard, Lacroix-Andrivet, Rüger, Giusti, Lavanant & Afonso (2023) Journal of the American Society for Mass Spectrometry 34, 617-626.
- [6] Hertzog, Mase, Hubert-Roux, Afonso, Giusti & Barrère-Mangote (2021) *Energy & Fuels* 35, 17979-18007.

¹University of Rouen-Normandy

²International Joint Laboratory, iC2MC: Complex Matrices Molecular Characterization

³Total Energies

⁴Bruker Daltonics GmbH & Co. Kg