Degradation of organic matter in nearshore waters of the Canadian Arctic coast

KIRSI H KESKITALO¹, MICHAEL LIM¹, JAMES MARTIN¹, REBECCA LEE², DUSTIN WHALEN² AND PAUL I MANN¹

Rapid increases in air temperature and sea ice loss in the Arctic are causing greater storminess and coastal erosion, enhancing the delivery of terrestrial, permafrost-derived organic matter into shallow coastal waters[1]. Additional terrestrial organic matter may settle on the seabed or degrade in the water column, releasing greenhouse gas emissions and acting as a positive feedback on climate warming[1].

Coastal erosion rates and controlling factors (e.g. cliff height, soil matrix) differ across the Canadian Arctic coast along with freshwater inputs[2]. This variability links to the characteristics of released organic matter (e.g. composition, carbon-mineral associations) affecting its susceptibility to microbial degradation in nearshore areas[3]. Here, we sampled waters along the varied Canadian Arctic coastline in August 2023 and executed shortterm incubations (20-68 h, in the dark, ~5 °C) on filtered and non-filtered waters. We measured dissolved O2, a proxy for microbial degradation, at ~10 min intervals and analysed water chemistry parameters and nutrients before and after incubations. Further, to connect degradation patterns to environmental conditions, we measured in-situ water chemistry, water isotopes $(\delta^{18}O)$, total suspended solids, particulate organic carbon (POC), δ¹³C-POC, total particulate nitrogen and dissolved organic carbon at each location.

Our preliminary results show a wide range in water isotope signal (from -19.95 to -4.04 ‰) and total suspended solids (from 15 to 754 mg L^{-1}) in nearshore waters, suggesting large variability between water sources and terrestrial inputs along the coast. Contrasting $\rm O_2$ loss rates during incubations suggest variation in the processing of organic matter between sampling locations. Improved understanding of water column degradation rates will help us to improve estimates of organic matter processing and greenhouse gas emissions along the coast.

References:

[1]Schuur, E. A. G. et al.: Climate change and the permafrost carbon feedback. Nature. 520, 171-179 doi:101038/nature14338, 2015.

[2]Lantuit, H. et al.: 2012 The Arctic Coastal Dynamics Database: A New Classification Scheme and Statistics on Arctic Permafrost Coastlines. Estuaries and Coasts. 35, 383–400. https://doi:10.1007/s12237-010-9362-6, 2012.

[3]van Crimpen, F. C. J. et al.: *Traveling light: Arctic coastal erosion releases mostly matrix free, unprotected organic carbon.* Geophys Res Lett. 51, e2024GL108622. https://doi.org/10.1029/2024GL108622, 2024.

¹Northumbria University

²Natural Resources Canada