Enhancing Environmental Monitoring of Radioactive Contaminants: Advances in DGT and Isotope Geochemistry

DR. JOSSELIN GORNY¹, ALKIVIADIS GOURGIOTIS¹,
CHARLOTTE LAFONT¹, CLÉMENTINE SAPEY¹,
CYRIELLE JARDIN¹, OLIVIER DIEZ¹, LAURELINE
FÉVRIER², FRÉDÉRIC COPPIN², CAROLINE SIMONUCCI¹,
STEFFEN HAPPEL³, JOSEP GALCERAN⁴, CLAIRE
VOISEUX⁵ AND CLAIRE GODINOT⁵

¹Autorité de sûreté nucléaire et de radioprotection (ASNR) – PSE-ENV/SPDR/LT2S, PSE-ENV/SIRSE/LER-NORD F-92260, Fontenay-aux-Roses, France.

²Autorité de sûreté nucléaire et de radioprotection (ASNR), PSE-ENV/SPDR/LT2S, F-13115, Saint-Paul-lez-Durance, France

⁴Departament de Química, Física i Ciències Ambientals i del Sòl, Universitat de Lleida and AGROTECNIO-CERCA, Rovira Roure 191, 25198, Lleida, Spain

⁵Autorité de sûreté nucléaire et de radioprotection (ASNR) - PSE/ENV/STAAR/LRTA, F-50130, Cherbourg-en-Cotentin, France.

Detection of minor uranium isotopes (234U, 235U, 236U) and 129I at ultra-trace levels is crucial for environmental monitoring to delimitate contaminated sites and identifying contamination sources. Minor U isotopes help to distinguish anthropogenic from natural inputs, while 129I mainly originates from nuclear activities such as fuel reprocessing and global fallout. Sampling techniques like Diffusive Gradients in Thin-films (DGT) can preconcentrate these isotopes from soil, sediment, or water, enhancing sensitivity for ultra-trace analysis, like Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The selective binding of DGT isolates U and I isotopes from the sample matrices, aiding accurate isotope ratio measurements by limiting analytical interference from organic matter and other major elements of the matrices. Unlike individual measurements (traditional sampling and preconcentration methodologies), this integrative technique enables continuous monitoring, improving the detection of variations over time enhancing, thus, radiological assessment reliability.

Since the 2020s, we have evaluated DGT performance by testing the well-known binding gels against their chelating power and we developed new ones to improve their specificity for U isotopes and to open perspectives for I isotopes. Ours works also contributed to extend sampling duration and to improve the detection of minor isotopes with a specific redox state *i.e.*, U(VI) and I(-I). This presentation will highlight the methodology for selecting and using the optimal uranium sensor and its environmental application in source identification [1]. Additionally, results for iodide detection [2] and perspectives on long-term monitoring will be discussed.

Finally, the presentation will show how these procedures can

be integrated into nuclear safety and radiation protection monitoring to strengthen radiological oversight.

References:

- [1] Gorny, Lafont, Sapey, Happel, Gourgiotis, Février, Galceran, Analytica Chimica Acta, 2024, 343266.
- [2] Gorny, Jardin, Diez, Galceran, Gourgiotis, Happel, Coppin, Février, Simonucci, Cazala, Analytica Chimica Acta, 2021, 1177, 338790.

³TrisKem International