Tracing Hadean Crustal Evolution: Sm-Nd and Pb-Isotope Constraints from the Singhbhum Craton and the Acasta Gneiss Complex

ALESSANDRO MALTESE¹, GUILLAUME CARO², KLAUS MEZGER³, PETER SPRUNG⁴, WOUTER BLEEKER⁵ AND ERIK E. SCHERER⁶

Reconstruction of Earth's earliest crustal evolution is hampered by the absence of a rock record from the Hadean eon. Isotope signatures of extinct radionuclides, such as ¹⁴⁶Sm⁻¹⁴²Nd, provide a unique means to trace Hadean differentiation processes. Coupled ^{146,147}Sm^{-142,143}Nd isotope systematics of Paleoarchean rocks from the Singhbhum Craton in India and the Acasta Gneiss Complex (AGC) in Canada bear isotopic evidence of their derivation from Hadean sources.

Felsic, mafic, and ultramafic rocks from the Singhbhum Craton exhibit a range of Nd-isotope ratios that are more radiogenic than that of the modern mantle (μ^{142} Nd up to +6). whereas the AGC gneisses are less radiogenic compared to the modern mantle (µ142Nd from -4 to -8.5), providing evidence for distinct Hadean mantle and crustal reservoirs. Both suites exhibit correlated 142Nd and 143Nd signatures, suggesting that they faithfully record the isotope composition of their protoliths. Combined 142,143Nd model ages indicate both source reservoirs were generated at ca. 4.2 Ga and were preserved within the lithosphere for several hundred million years, at least until the formation of the Paleoarchean suites. Using the modelled 147Sm/144Nd of the Hadean crust and a global compilation of igneous rocks, an intermediate composition (~55% SiO₂) is inferred for the Hadean crust. After transposition of the results into Lu-Hf systematics, this finding also aligns with the Lu-Hf record of the AGC gneisses.

Building on these insights, the Pb-isotope compositions of the same sample suites are investigated with the aim of determining whether they can trace early differentiation events in similar fashion when paired with a Pb-isotope framework for the Bulk Silicate Earth (BSE). Strongly-leached feldspar grains were analyzed by MC-ICP-MS using Tl for mass fractionation correction. First results for the Singhbhum Craton exhibit relatively primitive Pb-isotope ratios with minor deviations from BSE (206 Pb/ 204 Pb = 12.5870 (63), 207 Pb/ 204 Pb = 14.0528 (70), and 208 Pb/ 204 Pb = 32.297 (16)), possibly indicating that U/Pb and Th/Pb fractionation in the Hadean source was either insignificant or has not been preserved.

¹Swedish Museum of Natural History

²Centre de Recherches Pétrographiques et Géochimiques

³University of Bern

⁴Paul Scherrer Institut (PSI)

⁵Geological Survey of Canada

⁶Universität Münster