The Role of Pyrite in Reactive Oxygen Species Cycling on the Early Earth

CORNELIA MERTENS, NIR GALILI AND JORDON D. HEMINGWAY

ETH Zürich

Photochemical iron oxidation [1] combined with pyrite weathering has been proposed as a source of H₂O₂ and other reactive oxygen species (ROS), which may have acted as oxidants in anoxic early oceans. However, the extent and mechanism of ROS production during pyrite weathering has been ambiguous, showing significant variability across different experiments [2-5]. To better constrain this process, we developed a flow-through reactor system combined with high-sensitivity chemiluminescence measurements of H₂O₂ [6]. Rigorous testing allowed us to eliminate the influence of Fe2+ on H2O2 detection —a factor that has likely led to false positives in past studies [7]. We performed pyrite oxidation experiments under varying O₂ and H₂O₂ inflow concentrations, light intensities, and pyrite loadings. Our results reveal that pyrite oxidation does not lead to net H₂O₂ production; instead, H₂O₂ is always consumed during the oxidation process. From these observations, we derived a rate law for pyrite oxidation as a function of O_2 and $\mathrm{H}_2\mathrm{O}_2$ concentrations. On the early Earth, H₂O₂ produced via quartz surface abrasion [8] and silicate erosion [9] may have contributed substantially to ROS availability, acting as an effective oxidant for pyrite alongside Fe3+. Under anoxic conditions in 10 μM H₂O₂ solutions — concentrations that were suggested to be generated by oxidative weathering on Archean continents [9] we measured sulfate production rates of 1×10⁻⁹ mol m⁻² s⁻¹, comparable to rates observed in 1.5 mM irradiated ferrous iron solutions [1]. These results highlight the critical role of pyrite-H₂O₂ interactions in sulfate generation and ROS cycling, offering new insights into nutrient availability and redox dynamics crucial for early life evolution.

- [1] Hao et al. (2022), Sci. Adv. 8.26, eabn2226.
 - [2] Borda et al. (2001), Astrobiology 1.3, 283–288.
 - [3] Cohn et al. (2006), Geochem. Trans. 7, 1–11.
- [4] Schoonen et al. (2010), Geochim. Cosmochim. Acta 74.17, 4971–4987.
 - [5] Gil-Lozano et al. (2017), Sci. Rep. 7.1, 43703.
 - [6] King et al. (2007), Anal. Chem. 79.11, 4169–4176.
 - [7] Cohn et al. (2005), Geochem. Trans. 6, 1–5.
- [8] He et al. (2023), Proc. Natl. Acad. Sci. U.S.A. 120.13, e2221984120.
 - [9] Wu et al. (2023), Commun. Earth Environ. 4.1, 132.