Extracting geochronological and baric information from in situ phengite analysis - examples from deeply subjected continental rocks

CHRIS CLARK 1 , JIE YU 1 , MARTIN HAND 2 AND DR. BRUNO VIEIRA RIBEIRO, PHD 3

Laser ablation split stream multi-collector collision/reaction cell and quadrupole single-collector mass spectrometry has allowed simultaneous age, chemistry, and barometric information to be recovered from phengite-bearing eclogites of the Western Gneiss Region (WGR), Norway. All phengite grains yielded low Rb/Sr ratios with 430-420 Ma isochron ages, consistent with the timing of eclogite-facies metamorphism deduced from garnet ages rather than regional cooling ages returned from Ar-Ar mica analyses. In addition, the simultaneous collection of geochemical information from phengite was used to constrain peak pressures. The results from the barometry yielded pressures of 27-30 kbar in the southern part of the WGC and 36-38 kbar in the northern of the WGR. These results are consistent with previous estimates and the barometric pattern deduced from conventional petrological studies. The preservation of Rb-Sr ages and baric systematics in phengite, at conditions above the notional closure temperature, is interpreted to be due to a lack of pervasive fluid-rock interaction during exhumation and cooling of the WGR whereby phengite in eclogite is isolated from a sink mineral for the radiogenic Rb produced. The ability to simultaneously collect of isotopic and elemental compositions in micas facilitates the rapid characterisation of regional-scale age and baric patterns in high-pressure geological terranes.

¹Curtin University

²University of Adelaide

³Timescales of Mineral Systems Group, Curtin University