Environmental diversity, distribution, and evolution of microbial metal ion transport systems in global hydrothermal systems

FLAVIA MIGLIACCIO¹, DAVIDE CORSO¹, MARTINA CASCONE¹, DEBORAH BASTONI¹, MATTEO SELCI^{1,2}, GABRIELLA GALLO¹, ALESSIA BASTIANONI¹, FELICIANA OLIVA¹, BERNARDO BAROSA¹, FRANCESCO MONTEMAGNO¹, ANNARITA RICCIARDELLI¹, LUCA TONIETTI^{1,3,4}, MONICA CORREGGIA¹, LUCIANO DI IORIO¹, COSTANTINO VETRIANI^{2,5}, PETER H BARRY⁵, REBECCA TYNE⁵, KAREN LLOYD⁶, GERDHARD JESSEN⁷, AGOSTINA LAURA CHIODI⁸, MAARTEN DE MOOR^{9,10}, CARLOS RAMÍREZ-UMAÑA¹¹, ANGELINA CORDONE¹ AND DONATO GIOVANNELLI^{1,2,5,12,13}

Transition metals are crucial for microbial metabolism, serving as catalytic cofactors in enzymes or playing structural roles. The ubiquity of trace metals in physiological processes requires their uptake from the extracellular space. However, their bioavailability as a response to different redox states and their potential toxicity due to high reactivity selected for tight homeostasis regulation. Microorganisms evolved a plethora of metal transport systems to cope with variable environmental trace metals availability, which has in turn fluctuated during the history of our planet. These changes might have played a key role in the emergence and evolution of metal transporters.

The present study aims at describing the diversity and distribution of microbial metal transport systems across several geothermal environments, with a specific focus on shallow water hydrothermal vents and terrestrial deeply sourced seeps. In these ecosystems, microbial diversity and metabolism are tightly linked to the elements supplied by the water-rock interactions, providing an excellent model to investigate the diversity of microbial metal transport systems.

To this purpose, we performed shotgun metagenomics on

geofluids from around 200 thermal features across the world, and we carried out functional annotation of sequencing reads with a manually curated database of metal transport genes sequences. Metagenomics data were coupled to high resolution geochemical analysis, such as Ion Chromatography and Inductively-Coupled Plasma Mass Spectrometry.

Our results suggest the geochemical regime and trace metal abundance influence the diversity and abundance of microbial metal transporters. Specifically, we find an inverse correlation between metal transporters presence and trace metals environmental availability. Active metal transport systems tend to prevail over passive ones, thus indicating that metal homeostasis in geothermal environments requires energy consumption. Furthermore, metal uptake systems negatively correlate with metal abundance, while metal efflux systems increase with metal availability.

These relationships point to a dynamic regulatory mechanism, where microorganisms may adapt their metal uptake strategies in response to fluctuating metal concentrations, potentially offering new insights into microbial evolution of metal transport systems. Such findings could have broader implications for understanding microbial evolution in extreme environments, providing more insights into the fundamental role of metal availability in the regulation of microbial diversity.

¹University of Naples Federico II

²Rutgers University

³Parthenope University of Naples

⁴Osservatorio Astronomico di Capodimonte

⁵Woods Hole Oceanographic Institution

⁶University of Southern California

⁷Austral University of Chile

⁸Instituto de Bio y Geociencias del Noroeste Argentino (IBIGEO, CONICET-UNSa), Salta, Argentina

⁹National University

¹⁰University of New Mexico

¹¹Servicio Geológico Ambiental de Costa Rica (SeGeoAm), San José, Costa Rica

¹²National Research Council

¹³Tokyo Institute for Technology