

Testing the Icy Pebble Accretion Hypothesis: Constraints from Volatile Delivery to Large Main Belt Asteroids

JINFEI YU, HIROYUKI KUROKAWA AND TETSUO TAKI
The University of Tokyo

The main asteroid belt is a relic of the early Solar System, preserving crucial evidence from the planetary accretion epoch. Notably, large asteroids ($D > 120$ km) exhibit a taxonomic gradient with heliocentric distance—reflecting a transition from anhydrous to volatile-rich surfaces^[1]. One hypothesis suggests that some formed in a cold, distant reservoir and were implanted into the main belt during giant planet formation and migration^[2]. Alternatively, volatiles may have been delivered via inward-drifting icy pebbles in the protosolar disk^[3,4]. While this scenario remains untested in detail, recent advances in observations, including potential finding of ammonia-bearing compounds on large main belt asteroids^[5,6], provide opportunities to evaluate theoretical predictions. Here, we examine whether rocky asteroids formed in situ and acquired volatiles through pebble accretion as H_2O and NH_3 snowlines migrated inward.

Using a simplified disk model with a given snowline migration scenario^[7], we treat the turbulence strength of the disk, radial pebble flux, and pebble size (characterized by the dimensionless stopping time: Stokes number, St) as free parameters. We employ analytical expressions to calculate pebble accretion on rocky planetesimals^[8]. The model results are compared to topographic (the minimum thickness of the volatile-containing layer) and mass constraints for bodies in the main belt derived from observations^[5].

Results indicate that volatile delivery to asteroids via pebble accretion requires a moderate pebble flux ($<20M_{\oplus}/\text{Myr}$). Water accretion is feasible with $St < 10^{-3}$ (< 1 mm). Under such conditions, only the largest asteroids ($D \gtrsim 230$ km) such as Ceres can accumulate sufficient ammonia. For most asteroids with diameters of 100–200 km, ammonia accretion requires $St \sim 10^{-5}$ (~ 10 μm). Given that observations suggest significant dust growth to sizes larger than 10 μm ^[9], maintaining a sufficiently high flux of small grains required for ammonia accretion on small planetesimals is challenging. This may suggest that ammonia-bearing asteroids ($D \sim 100$ –200 km) in the main belt originated from distant migration.

[1] DeMeo & Carry 2014

[2] Takir et al., 2023

[3] Nara et al., 2019

[4] De Sanctis et al., 2015

[5] Rivkin et al., 2022

[6] Usui et al., 2019

[7] Oka et al., 2011

[8] Visser & Ormel 2016

[9] Andrews 2020