Past changes of weathering regime in laterites recorded in Fe isotope signal preserved in Fe oxyhydroxides.

ZUZANA FEKIACOVA¹, BEATRIX HELLER^{2,3}, DAMIEN GUINOISEAU², JULIEN BOUCHEZ⁴, ADRIEN DUVIVIER¹, SOPHIE CORNU¹, ABEL GUIHOU⁵, CÉCILE QUANTIN², THIERRY ALLARD³, PIERRE DESCHAMPS¹ AND CÉCILE E GAUTHERON^{2,6}

Deep lateritic profiles result from tropical weathering and represent valuable climatic and paleo-environmental terrestrial archives. These profiles can preserve information over millions of years [e. g., 1, 2] although unravelling the signals recorded in various geochemical proxies remains challenging. Iron oxides and oxyhydroxides (i.e., oxides s. l.) are redox-sensitive minerals evolving rapidly in response to redox fluctuations. Yet, recent studies showed that secondary Fe oxides can yield information documenting the environmental conditions at the time of their formation [3]. In this work we studied Fe isotope fractionation associated with (re)generation of secondary Fe oxides during the lifetime of a ferruginous duricrust, located in a profile at Kaw Mountain Ridge, French Guiana. We used (U-Th)/He age and mineralogical data [3] to constrain a Fe isotope mass balance model, with the aim of examining the Fe cycling in response to changing weathering conditions.

The d⁵⁶Fe values increase with decreasing age of Fe oxides, ranging from 0.15 $\pm 0.02\%$ at 25 Ma to 1.24 $\pm 0.09\%$ at 2 Ma. We observe a significant shift at around 7 Ma, concomitant with changing mineralogy and with the onset of increasing Al substitution in Fe oxides. We interpret this radical shift in the Fe isotope fractionation factor as reflecting the change from a lateritization regime to a bauxitisation regime identified by [3] in response to an intense climatic change in Guiana Shield region, during Late Neogene. Mass balance model results support this interpretation by suggesting (i) Fe cycling within a closed system during the ferruginous lateritic weathering stage (older than Late Neogene), producing low and homogeneous d⁵⁶Fe values in Fe minerals and, in contrast (ii) large Fe isotope fractionation explained by Fe cycling operating as an open system with significant Fe loss, consistent with intensified weathering and improved drainage conditions during the bauxitization phase.

References

- [1] Girard et al. (2000) Geochimica et Cosmochimica Acta 64, 409-429
 - [2] Vasconcelos et al. (2015) doi:

¹Aix Marseille Univ, CNRS, IRD, INRAE, CEREGE

²GEOPS, Université Paris Saclay, CNRS

³IMPMC, UMR 7590, CNRS, Sorbonne Université, MNHN

⁴Université Paris-Cité, Institut de physique du globe de Paris, CNRS

⁵Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE UMR 7330

⁶Université Grenoble Alpes