Long-term tracking of Fukushima-Derived Radionuclides in Seawater and Coastal Groundwaters

HABACUC PÉREZ-TRIBOUILLIER, PHD^{1,2}, NÚRIA CASACUBERTA AROLA³, SHIGEYOSHI OTOSAKA⁴, SEIYA NAGAO⁵, JESSICA DRYSDALE⁶ AND KEN O BUESSELER⁶

The Fukushima Dai-ichi nuclear accident on March 11, 2011, released large amounts of ¹³¹I, ¹³⁴Cs, and ¹³⁷Cs, along with smaller quantities of ⁹⁰Sr, ¹²⁹I, ²³⁹Pu, ²⁴⁰Pu, and other isotopes into the environment. The geochemical properties of these radionuclides govern their transport, mobility, and long-term fate across different environmental compartments. While remediation and monitoring efforts have been ongoing, contamination concerns persist, particularly regarding the controlled discharge of treated wastewater from reactor cooling. Although most radionuclides are largely removed(*I*), tritium remains entirely, raising questions about the long-term behaviour and transport of residual contaminants.

This study presents a comprehensive time-series analysis (2011–2024) of radionuclide concentrations in seawater around Fukushima, focusing on wastewater discharge impacts. The present work expands on previous studies ((2) and references therein) by incorporating data collected from 2018 to the present, offering insights into evolving trends. Our findings show a continued decline in ¹³⁷Cs, ⁹⁰Sr, and ¹²⁹I in seawater near the plant, while ²⁴⁰Pu/²³⁹Pu ratios remain consistent with Pacific background levels, suggesting no significant plutonium contamination.

Beyond open-ocean contamination, groundwater has emerged as an additional reservoir and a potential source of Fukushima-derived radionuclides. Previous work by Sanial et al. (3) detected anomalous ¹³⁷Cs concentrations in groundwater at Yotsukura Beach (~100 km south of Fukushima). Here we present new results of ¹³⁷Cs data from 2018 and 2024 and the first-ever ¹²⁹I measurements in beach groundwater in the region. Results show unexpectedly high ¹²⁹I concentrations increasing as salinity decreases, suggesting a different source mechanism than ¹³⁷Cs, likely unrelated to seawater infiltration. By integrating long-term monitoring, transport analysis, and geochemical insights, this research enhances our understanding of radionuclide behavior, particularly as wastewater discharge continues.

- 1. Buesseler, K. O. Opening the floodgates at Fukushima. *Science* **369**, 621–622 (2020).
- 2. Kenyon, J. A. et al. Distribution and Evolution of

- Fukushima Dai-ichi derived 137Cs, 90Sr, and 129I in Surface Seawater off the Coast of Japan. *Environ Sci Technol* **54**, 15066–15075 (2020).
- Sanial, V., Buesseler, K. O., Charette, M. A. & Nagao, S. Unexpected source of Fukushima-derived radiocesium to the coastal ocean of Japan. *Proc Natl Acad Sci U S A* 114, 11092–11096 (2017).

¹ETH Zürich, Laboratory of Ion Beam Physics

²ETH Zürich, Department of Environmental Systems Science

³Laboratory for Ion Beam Physics, ETH Zürich

⁴AORI, The University of Tokyo

⁵Low Level Radioactivity Laboratory, Kanazawa University

⁶Woods Hole Oceanographic Institution