Vanadium isotope fractionation during adsorption of V(V) onto manganese oxides

XUE TANG, WEI WEI AND FANG HUANG

University of Science and Technology of China

Vanadium isotope fractionation during adsorption of V(V) onto manganese oxides

Xue Tang, Wei Wei, Fang Huang University of Science and Technology of China

The vanadium isotope system ($\delta^{51}V$) of marine sediments has emerged as a promising proxy to track ocean redox evolution throughout the Earth history. This application relies on distinct geochemical behaviors and associated isotopic fractionations of V under different redox conditions. Among them, V(V) adsorption onto Fe-Mn (oxyhydr)oxides under oxic conditions is thought to be accompanied by the largest magnitude of isotope fractionation, but this process has not been experimentally investigated.

Here we determine V isotope fractionation factors (α_{sorbed} aqueous) through batch experiments of V(V) adsorption onto synthetic birnessite with different initial V concentrations (50-400 μM) and pH conditions (6-8). The results show preferential enrichment of light V isotope in the remaining pool, consistent with the natural investigation (Wu et al., 2019). These fractionations follow a Rayleigh fractionation model, yielding from 0.9991 ± 0.00009 to 0.99945 ± 0.00012 . $\alpha_{\text{sorbed-aqueous}}$ Specifically, the $\alpha_{\text{sorbed-aqueous}}$ is independent with pH condition $(R^2 < 0.1)$, but decrease with initial V concentration $(R^2 = 0.98)$. This effect of initial concentration could be attributed to the formation of mononuclear inner-sphere complexes dominated by a bidentate mononuclear edge-sharing configuration under a lowconcentration condition and of outer-sphere complexes or weakly adsorbed species under a higher-concentration condition. This study provides an essential constraint on V isotope fractionation when applying the V isotope system to reconstruct marine redox evolution in the past.

Reference

- [1] Wu F., Jeremy O., Tang L., et al., Vanadium isotopic fractionation during the formation of marine ferromanganese crusts and nodules. Geochim. Cosmochim. Acta. 265 (2019) 371–385.
- [2] Macon A., Michael S., Roxana R., et al., Vanadate Retention by Iron and Manganese Oxides. ACS Earth Space Chem. 2022, 6, 2041–2052.
- [3] Macon A., Michael S., Schaefer V., et al., Oxidation of V(IV) by Birnessite: Kinetics and Surface Complexation. Environ. Sci. Technol. 2021, 55, 11703–11712.