Lithium isotopic evidence of continental silicate weathering evolution in late Quaternary Arctic marine sediments

JINNIU CHEN¹, CHAO LI¹, WENSHEN XIAO¹, CHENGFAN YANG¹ AND SHOUYE YANG²

¹State Key Laboratory of Marine Geology, Tongji University ²State Key Laboratory of Marine Geology, Tongji University, Shanghai, China

Continental silicate weathering represents a critical process in maintaining Earth's carbon cycle balance and planetary habitability. Current research on continental weathering has concentrated on low-latitude tropical regions, while the characteristics and mechanisms of weathering in high-latitude regions remain poorly understood. The lithium (Li) isotopic composition of clay-sized silicate particles in sediments reflects clay mineral formation during chemical weathering. Residual weathering products, primarily clay minerals, tend to preferentially enrich ⁶Li, rendering Li isotopic (δ⁷Li) a robust tracer of continental weathering intensity. In this study, we investigate late Quaternary continental silicate weathering processes in high-latitude Arctic regions and their responses to glacial-interglacial cycles by analyzing Li isotopic compositions of Arctic Ocean core sediments, combined with Sr-Nd isotopic data. Results reveal that core ARC5-ICE6 sediment maintained a stable provenance since 700 ka, mainly from East Siberian rivers and shelves input. The δ⁷Li values of sediments range from -1.29‰ to +1.02‰, closely resembling the UCC (0 \pm 2‰). A gradual decline in δ⁷Li values suggests enhanced continental weathering since 700 ka, potentially linked to progressive cooling in the Arctic following the Mid-Pleistocene Transition (MPT). Weathering processes of Arctic regions are dominated by glacial erosion-driven physical weathering. Glacial transport increases bedrock comminution, substantially amplifying mineral specific surface areas and facilitating chemical weathering. Therefore, intensified glacial grinding under colder temperatures may enhance chemical weathering intensity in polar sediments. During glacial-interglacial cycles, interglacial periods (e.g., MIS 9, MIS 11) exhibit more negative δ⁷Li values compared to glacial periods (e.g., MIS 8, MIS 12), indicating stronger weathering intensity during warm intervals. This pattern highlights the dominance of climatic cycle in regulating chemical weathering evolution. Meanwhile, increased riverine input of secondary minerals during interglacials, coupled with glacier meltwaterenhanced mineral reactivity, may further drive the reduction of δ⁷Li.

This study clarifies high-latitude continental weathering characteristics and their response to climatic factors, and expands the application of silicate Li isotopes in tracing weathering processes. It provides new geochemical constraints for understanding Arctic continental weathering mechanisms across glacial-interglacial cycles.