Zircon Evidence Linking Mesozoic Magmatic Quiescence in Korea to Cretaceous Large Igneous Province in Eastern China: Provenance Insights from Ash-Fall Tuff at the Boundary of Hasandong-Jinju formations, Gyeongsang Basin, Korea

DR. YONG-UN CHAE, PHD¹, SUJIN HA², HYOUN SOO LIM² AND YOUNG JI JOO³

Zircons formed during the Mesozoic magmatic quiescence (MQ) period in Korean Peninsula have been identified in the Gyeongsang Basin, Korea, leading to multiple interpretations. Some studies suggest that short-lived and low-intensity magmatism in the Yeongnam Massif left no observable traces or was completely eroded. Others propose that zircons were transported from the Sulu Belt in East China via a long drainage system. The other suggests that they were likely delivered from eastern China by large-scale volcanic eruptions and westerly winds.

In the Korean Peninsula, no intrusive or extrusive rock bodies have been reported from the MQ period. Instead, the presence of MQ-period zircons has only been identified through detrital zircons in sandstones. As a result, determining their exact source and transport mechanism remains challenging. In this study, we discovered an approximately 3-5 cm thick ash-fall tuff from the MQ period at the boundary of the Hasandong and Jinju formations in the Gyeongsang Basin. To accurately characterize this ash-fall tuff and determine its depositional age, provenance, and transport mechanism, we conducted fieldwork, thin section observations, XRD analysis, whole-rock geochemistry, zircon SHRIMP U-Pb dating, and oxygen isotope analysis. Thin section observations revealed the presence of volcanic glass shards. The eruption age of this tuff is approximately 117.4 Ma, and the $\delta^{18}O$ values of zircons within the tuff are around 5.2%, which is similar to mantle value. The extremely thin nature of the tuff and its composition of very fine-grained particles suggest longdistance transport through the air. Additionally, the zircon oxygen isotope value is significantly lower than those reported from basement rocks (>7%) of the Korean Peninsula but is comparable to values observed in Cretaceous rock bodies from eastern China. The Hf isotope values of MQ-period zircons reported from the Korean Peninsula show a trend that closely resembles those of the North China Craton (NCC) rather than the Central Asia Orogenic Belt. In summary, this tuff and the MQperiod zircons reported from the Korean Peninsula are interpreted as materials erupted from volcanic activity in the North China Craton (NCC) and transported to the Korean Peninsula by westerly winds.

¹Pukyong National University

²Pusan National University

³Pukyung National university