Importance of midday photomixotrophy by *Roseiflexus* spp. to the ¹³C content of hot spring cyanobacterial mats

JAMES MORAN¹, PETER ILHARDT², SNEHA COUVILLION³, MARY LIPTON³, THOMAS METZ³, NIKOLA TOLIC³ AND DAVID WARD⁴

Microbial mats inhabiting extreme environments can serve as analogs for ancient stromatolites or for better understanding microbial interactions at the fringes of the habitable zone. Here, we use mats from two hydrothermal systems at Yellowstone National Park (Octopus Spring and Mushroom Spring) to test the hypothesis that multiple microorganisms, vertically stratified within the mat's layers can utilize different light wavelengths to simultaneously perform phototrophy during daylight. The benthic mats inhabiting the outflow channels of these springs are predominated by unicellular photoautotrophic cyanobacteria (Synechococcus spp.), which were historically thought to crossfeed photoheterothrophic filamentous phototrophic bacteria (mainly Roseiflexus spp.), except under early morning anoxic conditions when Roseiflexus has been shown to fix dissolved inorganic carbon (DIC). However, transcription patterns challenge the pre-exiting understanding of the system by suggesting that Roseiflexus spp. may perform daytime photomixotrophy, in which DIC is incorporated together with organic compounds. We performed 13C tracer studies over a daylight cycle to establish the timing of and roles played by Synechococcus spp. and Roseiflexus spp. in DIC and organic matter uptake in mid-day light and oxic mats. Samples were incubated under in situ conditions with either full (control incubations) or filtered (experimental) light intended to target distinct photoreceptors. Isotope ratio mass spectrometry (IRMS) showed that ¹³C-bicarbonate uptake into the mat under infrared (IR) light (utilized by anoxygenic phototrophs) or visible-minusblue light (used by cyanobacteria) was about half that incorporated in full light. Laser ablation IRMS (LA-IRMS) analysis demonstrated that 13C incorporation under visibleminus-blue light was restricted to the uppermost portion of the mat, whereas ¹³C incorporation under IR light was maximal in deeper mat layers; consistent with the respective vertical organization of Synechococcus spp. and Roseiflexus spp.. 13Cacetate, -propionate, -lactate, -and glycolate were incorporated into mat biomass at equal or greater extent under IR and full light. ¹³C tracer analysis of peptides demonstrated DIC uptake in both Synechococcus spp. and Roseiflexus spp., whereas Roseiflexus spp. also exhibited uptake of ¹³C-organic acids, especially glycolate and lactate into peptides. The potential for simultaneous autotrophic pathways, with different isotopic

¹Michigan State University

²Johnson Space Center

³Pacific Northwest National Laboratory

⁴Montana State University