## High Spatial Resolution Petrochronology by Laser Ablation: Application to Complex Accessory Minerals

ANDREW KYLANDER-CLARK  $^1$ , JOHN M. COTTLE  $^2$  AND MORGAN ADAMSON  $^1$ 

<sup>1</sup>University of California, Santa Barbara

Our ability to reconstruct the crystallization history of a given accessory mineral (i.e., geochronometers such as zircon, titanite, monazite, etc.)—and thus the geologic processes of its host—has increased severalfold over the past few decades; primarily through advances in precision, concurrent chemical analysis, throughput, and spatial resolution. In this contribution, we present a methodology that takes these advances a step further through the rapid characterization of a large number of accessory minerals at micron-scale resolution via laser-ablation inductively coupled plasma mass spectrometry. Our analytical setup employs an ultrafast washout laser (~1 ms; Element Scientific Laser) that can send individual, <5um ablation pulses to either one or both of two instruments: a Nu Plasma 3D mulitcollector ICP-MS and a Nu Vitesse time-of-flight ICP-MS. Because either ICP-MS can measure at the sub-ms timescale, every pulse can be analyzed at 100's of Hz; 1D, 2D, or 3D analysis is possible, and data can be processed in a matter of minutes and hours, instead of days or weeks. We highlight the advantages of this methodology through examples of accessory phases in complex plutonic rocks and high-grade metamorphic terranes.

<sup>&</sup>lt;sup>2</sup>Department of Earth Sciences, University of California, Santa Barbara, CA, USA