A common source for strongly silicaundersaturated magmas: New insights from Zn-Fe isotopes of kimberlites

RONGHUA CAI^{1,2}, ANDREA GIULIANI³, PAOLO A. SOSSI⁴, TIAN-HAO WU⁵, YONGSHENG HE⁵, GRAHAM PEARSON⁶, STEPHEN F. FOLEY² AND JINGAO LIU⁵

Kimberlites contain distinct asthenospheric and lithospheric mantle components, but disentangling their relative importance is a challenging yet important goal in understanding potential temporal and spatial variations in the kimberlite sources. We analyzed the Zn-Fe isotope compositions of 56 globally distributed kimberlites previously well characterized for their bulk-rock major-trace and radiogenic isotope compositions. Unlike lithophile trace element isotopes, Zn and Fe should be less affected by complex cryptic metasomatic processes that affect the lithospheric mantle. The Zn-Fe isotopes of kimberlites in this study (δ^{66} Zn = 0.21-0.52‰; δ^{56} Fe = 0.02-0.28‰) define a strong positive correlation (R²=0.87) from isotopically light compositions akin to cratonic peridotites to anomalously heavy compositions that are similar to those of melilitites and nephelinites globally. The Zn-Fe isotope compositions of kimberlites exhibit good correlations with whole rock Fe-Ti-Zn contents, Fe/Ti ratios, and, to a lesser extent, Sr-Nd isotopes. The correlation coefficients between δ^{66} Zn- δ^{56} Fe and incompatible decline with abundances incompatibility. These variations are best explained by mixing between compositionally similar primary kimberlite melts and cratonic mantle peridotites. Plots of Zn and Fe isotopes versus proxies of the degree of partial melting in mantle-derived magmas ranging from komatiites and picrites to nephelinites and melilitites show a progressive increase in δ^{66} Zn and δ^{56} Fe with decreasing extent of melting, so the relatively heavy Zn-Fe isotopes of primary kimberlite melt could be caused by lowdegree partial melting of the asthenosphere. The similarities of trace elements and isotopes between primary kimberlite magmas and nephelinites and melilitites reveal that these strongly silicaundersaturated magmas tap a common and fusible mantle source with PREMA-like (Prevalent Mantle) characteristics. Partial melting of the common source under different melting conditions can produce the spectrum of mantle melts from kimberlitic to basaltic melts without necessarily invoking the compositional variations in the mantle source.

¹Macquarie University

²Australian National University

³Carnegie Institution for Science

⁴ETH Zürich

⁵China University of Geosciences, Beijing

⁶University of Alberta