Constraints on Volatile Concentrations in Flood and Shield Lavas from the Afro-Arabian LIP

DEE CIRIUM¹, SALLY A GIBSON¹, SIMON PASSEY², BEN BLACK³ AND DEREJE AYALEW⁴

¹University of Cambridge

Large Igneous Provinces have often been implicated in mass and minor extinction events, driven in part by short term sulphurmode cooling and long term carbon-mode warming. The Afro-Arabian LIP is a compositionally zoned and diachronously emplaced continental flood basalt, with peak ages of 31-29Ma in the north of the Ethiopian highlands and 26-22Ma to the south. This protracted and pulsed eruption is contrary to LIP models wherein the bulk of flood volcanism occurs in a 1Myr timeframe, and is perhaps linked to cooling and faunal turnover at the Oligo-Miocene boundary, for which volatile delivery plays a role.

We present the first volatile dataset for the Afro-Arabian LIP from c.150 olivine- and pyroxene- hosted melt inclusions spanning temporal and compositional provinces within the flood basalts and overlying shield volcanoes. We use a combination of SIMS and EPMA to quantify the "igneous quintet" of magmatic volatiles (H2O, CO2, F, Cl, S) in glasses from both unhomogenised and rehomogenised inclusions. melt Additionally, we present reconstructed CO₂ concentrations using Raman Spectroscopy in rehomogenised melt inclusions where vapour bubbles are present. These results are used to extrapolate a preliminary volatile budget for the LIP, in combination with LIP volume estimates from GIS calculations.

Using concentrations of 1wt% CO₂ and a preserved LIP volume of ~230,000km³ over Ethiopia, we present a conservative budget of ~3500-6000 GtC outgassed over the lifetime of the Afro-Arabian LIP. These results are comparable to the Deccan Traps (3300-6600 GtC) [1], and lower than estimates from NAIP (18,000-40,000 GtC) [2] and the Siberian Traps (20,000-88,000 GtC) [2]. We propose that the muted climate response for Afro-Arabia can be, in part, explained by flux. LIP time-averaged fluxes are insubstantial on per annum timescales [2] and it is recognised that in order to constrain impacts on climate, volatile budgets must be evaluated alongside eruption histories. For pulsed LIPs like Afro-Arabia, where time-averaged estimates yield 1-2 MtC/y over a 10Myr timescale (a fraction of modern day global volcanic outgassing), it is crucial to evaluate pulses individually in order to assess climatic impacts.

- [1] Hernandez Nava et al (2016)
- [2] Saunders et al (2016)

²CASP

³Rutgers University

⁴Addis Ababa University