Mantle heterogeneities derived from the core-mantle interaction

JIE DENG

Princeton University

The anti-correlation between the ${}^{3}\text{He}/{}^{4}\text{He}$ and ${}^{182}\text{W}/{}^{184}\text{W}$ ratios, and the absence of highly siderophile elements observed in some ocean island basalts (OIBs) point to a possible contribution from the Earth's core. However, it remains elusive how to selectively transport He and W but not HSEs from the core to the OIB source. Here, we perform high-pressure experiments and large-scale atomistic simulations to evaluate the efficiency of transporting elements from the core to the mantle via oxide exsolution. Our results suggest core exsolution can selectively transport He and W but not HSEs [1,2]. The selective transport of core-like signatures via core exsolution can effectively explain the observed primordial signatures in ocean island basalts. Based on this finding, we propose a new longterm core-mantle chemical interaction model termed basal exsolution contaminated magma ocean (BECMO) which considers the addition of oxide exsolved from the core into the basal magma ocean [3]. We discuss the implications of BECMO for forming deep mantle geochemical and geophysical heterogeneities of various scales.

References:

- [1] Deng J., Du Z., (2023), Nature Geoscience, Extracting primordial helium from the Earth's core through MgO exsolution. https://www.nature.com/articles/s41561-023-01182-7.
- [2] Peng Y., Yu Y., Li J., Du Z., Long T., Niu H., Deng J. 2025, Selective transport of primordial signatures across the core-mantle boundary by adsorption. https://doi.org/10.21203/rs.3.rs-5478733/v1.
- [3] Deng J., Miyazaki Y., Yuan Q., Du Z. 2025. Formation of deep mantle heterogeneities through basal exsolution contaminated magma ocean. https://doi.org/10.21203/rs.3.rs-3263305/v1.