The infidelity of H₂O/Ce in alkalic melts—a result of low-degree melting and CO₂-rich primary melts OLIVIA E ANDERSON 1,2 , MATTHEW G. JACKSON 1 , JAMES W DOTTIN III 2 , SUNNA HARÐARDÓTTIR 1 , KENNETH T. KOGA 3 , GARETH SEWARD 1 , JOHN M. COTTLE 4 , DR. ESTELLE F. ROSE-KOGA 5 AND NATÁLIA GAUER PASQUALON 6 We analyzed O'ahu rejuvenated olivine-hosted (Fo₈₀₋₈₃) melt inclusions from the Honolulu Volcanic Series for major elements (by EPMA), trace elements (by LA-ICP-MS), and volatiles (H₂O, CO₂, and Cl by NanoSIMS, and F and S by EPMA). These melt inclusions, which are foiditic in composition, are highly alkalic (7.9–11.3 wt.% Na₂O+K₂O) and silica-undersaturated (37.42–39.33 wt.% SiO₂). The O'ahu rejuvenated melt inclusions have H₂O/Ce ratios of 12 to 63, which is low compared to other submarine glasses and melt inclusions from MORB (~100-300[1-2]) and OIB localities (non-enriched mantle on average 209±92 (2SD)[3 and references therein]). The melt inclusions in this study have low H₂O/Ce because they were shallowly entrapped (2-29 MPa) and highly degassed due to closed-system degassing starting at great pressure (~2.9 GPa). Closed-system degassing that initiates deep will lead to the loss of both CO₂ and H₂O, as seen in the O'ahu rejuvenated melt inclusions. However, due to the higher solubility of CO2 in alkalic melts, one of the bubble-free melt inclusions has 1.7 wt.% CO₂, which is comparable to other measured values[4-6] of CO₂-rich, alkalic melt inclusions. We found that, at a given pressure, CO₂-rich, alkalic melts degas more H2O compared to CO2-poor tholeiitic melts via closed-system degassing. This relationship is established, in part, by the degree of melting because CO₂ is relatively incompatible. Alkalic melts most often derive from lower degrees of melting and, since degree of melting controls the amount of CO₂ in primary melts, the degree of melting has an indirect influence on the H₂O/Ce of melts at shallow pressures. At 50 MPa, a highly alkalic, CO₂-rich melt will have lost ~61% H₂O through closed-system degassing whereas a tholeitic, CO₂poor melt will have lost only ~6% H₂O. Therefore, at a given pressure, the more alkalic a melt, the more degassed in H₂O and CO₂, and thus the lower the H₂O/Ce. [1] Dixon et al. (2002) *Nature*, [2] Michael (1995) *EPSL*, [3] Anderson et al. (2024) *Chem. Geol.*, [4] DeVitre et al. (2023) *PNAS*, [5] Lo Forte et al. (2024) *GCA*, [6] Moore et al. (2021) *JVGR*. ¹University of California Santa Barbara ²Brown University ³Université d'Orléans ⁴Department of Earth Sciences, University of California, Santa Barbara, CA, USA ⁵ISTO, CNRS ⁶University of Hawai'i at Mānoa