Goldschmidt 2025 Abstract https://doi.org/10.7185/gold2025.30146

## Evolution of photosynthetic carbon isotope fractionation in Dziani Dzaha lake during a high-CO<sub>2</sub> event: connecting modern and Precambrian conditions

**JONAS FRERE**<sup>1</sup>, ALEXIS GROLEAU<sup>2</sup>, DIDIER JÉZÉQUEL<sup>3</sup>, CÉCILE BERNARD<sup>4</sup>, CHRISTOPHE LEBOULANGER<sup>5</sup>, CÉCILE ROQUES<sup>6</sup> AND MAGALI ADER<sup>7</sup>

The  $^{13}\text{C}/^{12}\text{C}$  carbon isotope fractionation associated with photosynthesis  $(\epsilon_p)$  is widely used as a proxy for reconstructing ancient pCO2 and investigating ancient primary producers' physiology [1]. So far,  $\epsilon_p$  has been calibrated essentially using culture experiments and modern ecosystems with Phanerozoic levels of pCO2. Only a few experimental studies focused on cyanobacteria at the extremely high pCO2 expected for the Precambrian [2]. To fill this gap, we focus here on the Dziani Dzaha crater lake (Mayotte, Indian Ocean, France), a cyanobacteria-dominated lake analogous to Precambrian environments [3]. It presents magmatic CO2 bubbling, which increased after the birth of the nearby underwater Fani Maore volcano in 2018 [4]. We obtained pCO2,  $\epsilon_p$  and cell-count data for the 2020-2024 period in order to compare them to available data for the pre-eruption 2012 to 2017 period.

The results show that since 2021, pCO<sub>2</sub> has increased from approximately 3.000 to 80.000 ppm while  $\epsilon_p$  has risen from +18.4 to +21.2 ‰. These changes were simultaneous to changes in the abundance of the main primary producers' species. Large cells (> 5µm) that initially dominated the ecosystem showed a smaller increase in  $\epsilon_p$  with increasing pCO<sub>2</sub> than smaller cells (< 5µm) that now dominate primary production. This shows that both pCO<sub>2</sub> increase and changes in the ecosystem are accountable for the  $\epsilon_p$  rise.

The range of  $\varepsilon_p$  values obtained here are within those obtained in culture experiments with similarly high pCO<sub>2</sub> [1], which validates the use of this proxy in natural, complex ecosystems and reenforces its extrapolation to Precambrian time. But it also demonstrates that even at extremely high pCO<sub>2</sub>, large cells express a significantly lower  $\varepsilon_p$  (ca  $\approx$  –2 ‰) than expected maximum values, so that changes in the  $\delta^{13}\text{C-POC}$  in Precambrian sedimentary rocks may also reflect changes in species rather than pCO<sub>2</sub>.

## **References:**

- 1. Garcia, A. K., et al. ISME J 15, 2183–2194 (2021).
- 2. Hurley, S. J. *et al. Science Advances* 7, eabc8998 (2021).
- 3. Cadeau, P. et al. Sci Rep 10, 18186 (2020).
- Cadeau, P. et al. Comptes Rendus. Géoscience 354, 299–316 (2022).

<sup>&</sup>lt;sup>1</sup>Université Paris Cité, Institut de Physique du Globe de Paris <sup>2</sup>Université Paris Cité, Institut de physique du globe de Paris,

CNRS, F-75005 Paris, France

<sup>&</sup>lt;sup>3</sup>Institut de Physique du Globe de Paris /CNRS UMR 7154

<sup>&</sup>lt;sup>4</sup>Muséum National d'Histoire Naturelle

<sup>&</sup>lt;sup>5</sup>MARBEC, Université de Montpellier

<sup>&</sup>lt;sup>6</sup>UMR MARBEC, CNRS

<sup>&</sup>lt;sup>7</sup>Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, Paris, France