Neritic Carbonates Resolve an Apparent Imbalance in Seawater Stable Strontium Isotopes

MATTHEW D NADEAU¹, JOHN A HIGGINS¹, LUCIEN NANA YOBO², CHRIS HOLMDEN³ AND BLAIR SCHOENE¹

The stable strontium isotope composition of seawater ($\delta^{88/86} Sr_{sw}$) is a valuable tracer of global carbonate precipitation, yet its modern mass balance remains uncertain. Current estimates suggest an imbalance of ~0.1% between Sr inputs and outputs, interpreted as resulting from large fluctuations in Sr fluxes on glacial time scales. Alternatively, this discrepancy may stem from an incomplete understanding of the $\delta^{88/86} Sr$ signature of the neritic carbonate sink, which represents ~77% of Sr removal from seawater.

Here, we present the first large dataset (n=146) of $\delta^{88/86} Sr$ values in Neogene neritic carbonates. These data reveal substantial $\delta^{88/86} Sr$ variability (~0.10% to ~0.45%), with systematically higher values in neritic carbonates than in pelagic carbonates. Paired geochemical and mineralogical analyses (e.g., $\delta^{44} Ca$, Sr/Ca, Mg/Ca) indicate that this variability is primarily controlled by carbonate mineralogy (aragonite vs. calcite) and biogenic precipitation kinetics. Early marine diagenesis further modifies carbonate $\delta^{88/86} Sr$ values, with dolomitized samples exhibiting the heaviest values (~0.36%), aligning with expectations for slow recrystallization under near-equilibrium conditions from a pore fluid with a $\delta^{88/86} Sr$ signature of 0.40%.

By integrating these results into a revised global Sr budget, we estimate a Sr burial flux-weighted carbonate sink $\delta^{88/86} Sr$ value which is significantly higher than previous estimates (0.15-0.21‰). This revision reconciles the marine Sr isotope mass balance and reduces the need for large, transient changes in Sr fluxes. Furthermore, the wide range observed in $\delta^{88/86} Sr$ values of modern neritic carbonates suggests that spatial heterogeneity must be considered when interpreting secular $\delta^{88/86} Sr$ trends in the rock record.

These findings highlight the first-order control of carbonate depositional environment and biogenic calcification on seawater $\delta^{88/86}$ Sr, with implications for understanding the evolution of the global carbonate cycle.

¹Princeton University

²Texas A&M University

³University of Saskatchewan