The effect of pH on the kinetics of D/H isotopic exchange between molecular hydrogen and water

FLORA LISA HOCHSCHEID¹, ANDREW CARL TURNER², MARKUS BILL³ AND DANIEL A STOLPER¹

Molecular hydrogen (H₂) is now being considered as a carbonfree fuel and energy vector with the potential to play a key role in the energy transition. In the Earth's subsurface, natural H₂ emissions, dominantly produced from water-rock reactions, have been observed in a variety of geological settings. The measured isotopic composition of (white) H2, given as D/H ratio or D, varies from ~-995% to ~-50% [1]. This wide range is influenced by a variety of processes, including kinetic isotope effects associated with H₂ formation, destruction, and equilibration with water, the latter proceeding at fast (order year) timescales at low temperatures (<100°C). It is generally assumed that in geologic settings, H2 is found in isotopic equilibrium with local waters such that the D of H₂ (i.e., D_{H2}) is set by D of local waters (i.e., $D_{H2O(l)}$) and temperature of the system. This temperature dependent distribution, termed the fractionation factor (DH2O(I)- $H_{2(g)}$), is commonly used as a geothermometer for subsurface H_2 formation or re-equilibration temperatures.

Here we will present new experimental data on the kinetics of D-H exchange for H_2 dissolved in liquid water at temperatures below 100°C along with our recently published calibration of hydrogen isotope equilibrium between H_2 and liquid water [2]. Specifically, we are conducting experiments in a flexible gold reaction cell (i.e., Dickson-type apparatus) at low temperature (<100°C) under neutral and alkaline pH conditions (pH = 7 and 10) to test the role of OH in setting the speed of exchange. These systems do not have a headspace and allow for continuous sampling. We will compare our new results with previous experiments and discuss the effect of pH on the kinetics of D/H isotope exchange and its implication for subsurface hydrogen generation, in particular from low temperature serpentinization which is the most likely source of H_2 in alkaline springs.

- Gibson, J. J., et al., (2024). International Journal of Hydrogen Energy, 66, 468-478.
- 2. Hochscheid F., et al., (2025). *Geochimica et Cosmochimica Acta*. In press.

¹University of California, Berkeley

²U.S. Geological Survey

³Lawrence Berkeley National Laboratory