Enhanced organic carbon remineralization associated with *Cloudina* parautochthonous accumulations in the late Ediacaran Tamengo Formation

SERGIO CAETANO-FILHO¹, GUSTAVO M. PAULA-SANTOS², PIERRE SANS-JOFRE³, MAGALI ADER⁴, KAMILLA BORGES⁵, JHON AFONSO⁶, JULIANA DE MORAES LEME DE MORAES BASSO⁷, LUANA MORAIS⁸, JUAN GÓMEZ-GUTIÉRREZ², MARLY BABINSKI⁹, GUILHERME RAFFAELI ROMERO⁷, PAULO CÉSAR BOGGIANI⁷, BERNARDO T. FREITAS⁸ AND RICARDO TRINDADE¹⁰

The advent of biomineralization of skeletal parts in early metazoans during the Ediacaran is meant to require sufficient oxygen levels in benthic environments, yet bottom water oxygenation was complex and spatially variable within predominantly anoxic continental platforms. We analyzed paired carbon isotopes from three sections of the late Ediacaran Tamengo Formation (Brazil) to investigate isotope variation across different Cloudina occurrences along inner to mid-ramp environments. A distinct δ^{13} C shift in the mid-ramp deviates from stable values observed in inner and other mid-ramp settings. Decoupled C_{carb} - C_{org} isotope trends and higher magnitude of variation align with parasequence cyclicity and Cloudina-dominated parautochthonous deposits displaying early Fe-oxyhydroxide cementation. This suggests localized disturbances in the dissolved inorganic carbon (DIC), likely driven by enhanced oxic organic carbon mineralization in more oxygenated mid-ramp environments inhabited by metazoans. We propose a scenario in which balanced bioproductivity and respiration prevented eutrophication from high continental nutrient input, as envisaged for more proximal areas, while sustaining benthic oxygenation above the basin chemocline. These findings, supported by spatially distributed paired carbon isotope trends, provide new insights into the complex redox architecture of Ediacaran seas and their role in shaping early metazoan habitats.

¹Universidade Estadual Paulista

²Faculty of Geosciences and MARUM – Center for Marine Environmental Sciences, University of Bremen

³IMPMC, CNRS, Sorbonne Université, MNHN

⁴Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, Paris, France

⁵Universidade Federal de Mato Grosso

⁶Observatório Nacional

⁷Instituto de Geociências, Universidade de São Paulo

⁸Instituto de Geociências, Universidade Estadual de Campinas

⁹Universidade de São Paulo

¹⁰Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo