Crustal evolution of carbonatitic melts: Insights from the CaCO₃–MgCO₃–Na₂CO₃ ternary

PHILIPP M RICHERT AND MAX W SCHMIDT

ETH Zürich

Carbonatites represent the most important host-rocks of REE-(Nb) ore deposits in the continental crust. However, the formation and particularly magmatic differentiation of ascending and crystallizing carbonatitic melts remains poorly understood. This is because intrusive carbonatite rocks are cumulates, about 1/3 of which are dolomite dominated. Yet, in the CaCO₃-MgCO₃ binary, dolomite is limited to subsolidus conditions at crustal pressures (<0.8)GPa), as dolomite reacts calcite+periclase+CO₂ at temperatures above the CaCO₃-MgCO₃ eutectic (~1090 °C)^[1]. It is therefore not possible that dolomitebearing carbonatites crystallize from a simple CaCO₃ - MgCO₃ (+/- SiO₂) melt. To lower liquidus temperatures and thus allow for dolomitic carbonatites, alkalis and/or H2O have been proposed as the critical components in carbonatite melt evolution [1], both of them potentially suppressing the liquidus surface down to the dolomite stability field.

This study determines the liquidus phase relationships in the CaCO₃-MgCO₃-Na₂CO₃ ternary at upper crustal conditions (0.2) GPa), as relevant for the intrusion of most carbonatites. Our experiments show that any calcitic or dolomitic carbonatite melt initially evolves towards a calcite-periclase cotectic and would not crystallize dolomite. Co-precipitation of periclase and calcite on the cotectic during cooling fractionates melt compositions towards higher alkalinity. Dolomite replaces periclase on the liquidus only at T <775 °C, at which (peritetic) point the melt has molar fractions of 0.35-0.4 Na₂CO₃ (X_{Na2CO3}). On the Ca-Naside, nyerereite (Na₂Ca[CO₃]₂) + calcite appear on a second cotectic at T < 750 °C and $X_{Na2CO3} = 0.45$. With cooling, such melts evolve towards the calcite-dolomite cotectic. At X_{Na2CO3} > 0.45 and T <700 °C calcite is then no longer a liquidus phase, and is replaced by dolomite and nyerereite. The experiments show that a sufficiently alkaline melt is critical to dolomite crystallization. The phase relations and fractionation trends established here indicate that plausible primary carbonatitic melt with 10-20 % Na₂CO₃ could potentially produce dolomitic cumulates, if sufficiently differentiated. The results further suggest that calcite may react out at the dolomite-calcitenyerereite peritectic during fractionation, and not necessarily remain a primary mineral phases in late-magmatic (dolomitic) carbonatites.

[1]Schmidt, Giuliani & Poli (2024), J. Petrol. 65, egae105.