Zinc isotopes in tooth enameloid unravel the palaeoecology of Late Cretaceous sharks

JEREMY MCCORMACK¹, MICHAEL L GRIFFITHS², HARRY MAISCH IV³, MARTIN BECKER², WOLFGANG MÜLLER¹, JADE KNIGHTON⁴, ROBERT A EAGLE⁵ AND KENSHU SHIMADA⁶

¹Goethe University Frankfurt

Zinc isotope ratios (66 Zn/ 64 Zn), reported as δ^{66} Zn value, are used as a novel trophic-level proxy that is increasingly applied to address archaeological and palaeobiological research questions. While the traditional trophic proxy δ^{15} N increases in numerical value with trophic position, δ^{66} Zn values decrease. Thus, like δ^{15} N, δ^{66} Zn allows inferring the position of an organism in relation to the energy transfer from the bottom to the top of a food web. If pristine δ^{66} Zn values are preserved in fossils, their analysis allows for reconstructing the role of biota in the palaeoenvironment. Due to its hypermineralised nature, tooth enameloid has a high potential to preserve primary, i.e. biological, geochemical signals even on geological timescales. Indeed, pristine biological shark enameloid δ^{66} Zn values preserve at least as far back as the Miocene.

Here we analyse enameloid δ^{66} Zn values of Late Cretaceous sharks, thereby exploring the potential for enameloid δ^{66} Zn values to investigate the food web structures and trophic positions of sharks even further back in time. Our samples come from the Western Interior Seaway (WIS), a major epicontinental sea that divided North America during the Late Cretaceous with rich ecosystems that hosted a wide variety of marine life. We focus on specimens from two Upper Cretaceous (Turonian-Coniacian transition) localities in the USA, the Tocito Sandstone-Mulatto Tongue of the Mancos Shale in New Mexico and the Codell Sandstone Member of the Carlile Shale in Kansas. Our results demonstrate well-preserved enameloid δ^{66} Zn values in both localities, but locality-specific differences in the diagenetic modification of dentine δ^{66} Zn values. We find significant resource partitioning among the 16 analysed taxa within the WIS. This new study expands the use of enameloid δ^{66} Zn analyses much deeper into geological time than before to demonstrate robust reconstructions of food web dynamics and trophic interactions in late Mesozoic marine ecosystems.

²William Paterson University

³Florida Gulf Coast University

⁴University of California

⁵University of California - Los Angeles

⁶DePaul University