Petrogenesis and Geochemical Features of Peralkaline A-type Granites: reconciling insights from comendite and pantellerite peralkaline rhyolitic systems

DR. FAZILAT YOUSEFI 1 , **DAVID R. LENTZ^2** AND ERIC (XUEMING) YANG 3

The alkalinity of igneous rocks, determined by the ratio of alkalis (Na₂O+K₂O) to silica concentration, offers insights into parental magmas, source depths, tectonic settings, and their potential for economic mineralization. Peralkaline A-type granites and rhyolites (A/NK: 0-1, A/CNK: 0-1.0) are evolved igneous suites that develop in various extensional settings, ranging from continental to oceanic environments. Peralkaline rhyolites are classified based on Al₂O₃ and FeO₄ contents into comendite (FeO_t 1.5-5.7 wt.%, Al₂O₃ 10.5-15.4 wt.%, FeO_t/MgO <10) and pantellerite (FeO_t 5.2-7.5 wt.%, Al₂O₃ 9.1-10.2 wt.%, FeO_t/MgO >10-20). The alkalinity of igneous rocks can be determined using the Rittmann serial index $(Na_2O+K_2O)^2/(SiO_2-43)$], with igneous rocks categorized into calcic ($\sigma \le 1.2$), calc-alkalic (1.2< $\sigma < 3.5$), alkali-calcic (3.5< σ <8.8), and alkalic ($\sigma \ge 8.8$) series. The GEOROC database with comendites (n=630) and pantellerites (n=546) shows they have high alkalinity, with comendites exhibiting a σ value of 3.04 ± 1.28 and pantellerites a σ value of 3.83 ± 1.49 . Alkalinity is used along with Agpatitic Index (AI; molar (Na₂O+K₂O)/Al₂O₃), with AI >1 indicative of peralkaline granite and rhyolite, as well as Ti/V >100. Other geochemical features of pantellerite and comendite include their elevated concentrations of Th (10-100 ppm), Zr (100-2500 ppm); peralkaline rhyolites, characterized by Y+Nb >60 ppm, Ta+Yb >6 ppm, Nb/Y >0.7, and Ta/Yb ~ 0.9, belong to the A-type within-plate suite. Pantellerites and comendites display mantle-derived A-type features with Nb/Y ranging from 0.27-18.3 to 0.2-5.57 in comendites and pantellerites, respectively, reflecting variable mantle influence, fractional crystallization, and crustal interaction in rift settings. Their alkalic nature is confirmed by FeOt/(FeOt+MgO) >0.8, FeOt/MnO >10, Zr/TiO₂ >0.1, Zr+Nb+Ce+Y >450 ppm, Nb >30 ppm, Ce >100 ppm, Th >20 ppm, Eu/Eu* = 0.23, and Ga/Al >0.00025. In peralkaline magmatic systems, fO₂ influences meltcrystal assemblages, with comendite forming under higher fO than pantellerite; both represent endmembers of bimodal intraplate suites, derived from trachyte magmas through fractional crystallization at crustal pressures near the favalitemagnetite-quartz (FMQ) buffer. Petrogenesis of comendite and pantellerite is thought to be emplaced in intraplate settings, derived from low-degree partial melting of enriched mantle and/or likely experiencing considerable fractional crystallization during ascent.

¹University of New Brunswick (UNB)

²University of New Brunswick

³Manitoba Geological Survey